This proposal seeks continued funding for the Tetrahymena Stock Center in order to maintain its current operations, expand its capabilities and ensure its sustainability as a resource for the community at-large. A key model for eukaryotic cell and molecular biology, Tetrahymena thermophila has been instrumental to our understanding of a wide range of biological phenomena with direct relevance to human health and disease including cancer, infertility, aging, respiratory and neuroendocrine dysfunction. Tetrahymena has also shown great promise as a platform for the production of recombinant proteins, including vaccine antigens and difficult- to-express human ion channels, and serves as a useful teaching tool in K12 and undergraduate classrooms. Specifically, our aims for the Resource are to 1) continue to act as a strain repository accepting new strains and making live cultures of T. thermophila available to interested users at reasonable cost; 2) complete the annotation of archival strains currently housed at the Center and acquire next-generation cloning vectors for micro- and macronuclear genome-editing; 3) offer expanded services and develop innovative marketing approaches to increase revenues. Additionally, to ensure insure long-term stability of the resource we plan to 4) relocate the repository from Cornell University to Washington University in St. Louis; 5) migrate all data from the legacy Tetrahymena Genome Database (TGD) schema to CHADO and transfer its web-hosting functions from Bradley University to the NSF-funded National Center for Genome Analysis Support (NCGAS) at Indiana University; and, 6) redesign the TGD website to display relevant data via the Tripal framework. Our additional Research aims are to: 7) develop genetic strains lacking a functional ribosomal DNA locus to enable selection-free creation of new cell lines; and, 8) develop CRISPR-mediated genome editing tools to enhance the overall utility of the Tetrahymena platform.
This project will support the use of Tetrahymena thermophila as a tool for basic and applied research. This organism has played a key role in our understanding of important biological processes including those underlying cancer, aging, fertility, respiratory and neuroendocrine function, and has practical applications as a manufacturing platform for vaccines and therapeutics proteins for the treatment of human disease.
Pinello, Jennifer Fricke; Lai, Alex L; Millet, Jean K et al. (2017) Structure-Function Studies Link Class II Viral Fusogens with the Ancestral Gamete Fusion Protein HAP2. Curr Biol 27:651-660 |
Cole, Eric S; Cassidy-Hanley, Donna; Fricke Pinello, Jennifer et al. (2014) Function of the male-gamete-specific fusion protein HAP2 in a seven-sexed ciliate. Curr Biol 24:2168-2173 |