The Bloomington Drosophila Stock Center (BDSC) supports a large, worldwide community of scientists using the insect Drosophila melanogaster as a model organism for biomedical experimentation. The goals of the BDSC are to provide a collection of documented living stocks of broad value to current research, to preserve documented strains with clear future value, and to provide information and support services that promote maximal exploitation of these materials. These goals facilitate research by providing universal and rapid access to the most generally useful stocks, by preserving specialty genotypes with exceptional characteristics, and by providing information that helps researchers identify stocks appropriate to their needs. Drosophila is used extensively in studies of biological processes relevant to human health and investigations of molecular mechanisms underlying disease, because genetic technologies available to Drosophila researchers are among the most sophisticated in any multicellular organism. As the most comprehensive source of stocks for genetic experimentation with Drosophila, the BDSC is central to the success of many research projects including a large number of NIH grants. The first specific aim of this proposal is to continue acquiring, maintaining and distributing Drosophila strains and to continue developing associated information resources to meet the research needs of Drosophila scientists while maintaining and promoting excellent user support. Key to this aim is the administration and advancement of the highly successful cost recovery program that finances operational expenses from user fees. Consequently, the proposal focuses on support and development of the core management team as the most effective way to leverage the investment of NIH resources. The second specific aim is to undertake research to increase the utility of a subset of BDSC stocks which have been preserved for their distinctive mutant phenotypes. The work will experimentally map mutations in these stocks to specific transcription units in the genome sequence and will substantially increase the usefulness and relevance of the stocks to researchers investigating the functional significance of molecularly defined genes.

Public Health Relevance

The Bloomington Drosophila Stock Center is the U.S. repository and distribution center for genetically characterized strains of Drosophila melanogaster, an insect used in thousands of laboratories worldwide both to investigate fundamental biological processes and to understand cellular mechanisms related to human diseases.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Animal (Mammalian and Nonmammalian) Model, and Animal and Biological Material Resource Grants (P40)
Project #
5P40OD018537-03
Application #
9089697
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Zou, Sige
Project Start
2014-08-01
Project End
2019-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Indiana University Bloomington
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
006046700
City
Bloomington
State
IN
Country
United States
Zip Code
47401
Park, Annie; Tran, Tracy; Atkinson, Nigel S (2018) Monitoring food preference in Drosophila by oligonucleotide tagging. Proc Natl Acad Sci U S A 115:9020-9025
Tan, Kai Li; Haelterman, Nele A; Kwartler, Callie S et al. (2018) Ari-1 Regulates Myonuclear Organization Together with Parkin and Is Associated with Aortic Aneurysms. Dev Cell 45:226-244.e8
Lee, Chang-Hyun; Kiparaki, Marianthi; Blanco, Jorge et al. (2018) A Regulatory Response to Ribosomal Protein Mutations Controls Translation, Growth, and Cell Competition. Dev Cell 46:456-469.e4
Webber, Jemma L; Zhang, Jie; Massey, Alex et al. (2018) Collaborative repressive action of the antagonistic ETS transcription factors Pointed and Yan fine-tunes gene expression to confer robustness in Drosophila. Development 145:
Blanco-Redondo, Beatriz; Langenhan, Tobias (2018) Parallel Genomic Engineering of Two Drosophila Genes Using Orthogonal attB/attP Sites. G3 (Bethesda) 8:3109-3118
Torres, Joana; Monti, Remo; Moore, Ariane L et al. (2018) A switch in transcription and cell fate governs the onset of an epigenetically-deregulated tumor in Drosophila. Elife 7:
Duncan, Olivia F; Granat, Lucy; Ranganathan, Ramya et al. (2018) Ras-ERK-ETS inhibition alleviates neuronal mitochondrial dysfunction by reprogramming mitochondrial retrograde signaling. PLoS Genet 14:e1007567
Shukla, Vallari; Dhiman, Neena; Nayak, Prajna et al. (2018) Stonewall and Brickwall: Two Partially Redundant Determinants Required for the Maintenance of Female Germline in Drosophila. G3 (Bethesda) 8:2027-2041
Schlichting, Matthias; Rieger, Dirk; Cusumano, Paola et al. (2018) Cryptochrome Interacts With Actin and Enhances Eye-Mediated Light Sensitivity of the Circadian Clock in Drosophila melanogaster. Front Mol Neurosci 11:238
Chen, Anlu; Tiosano, Dov; Guran, Tulay et al. (2018) Mutations in the mitochondrial ribosomal protein MRPS22 lead to primary ovarian insufficiency. Hum Mol Genet 27:1913-1926

Showing the most recent 10 out of 479 publications