The Bloomington Drosophila Stock Center (BDSC) supports a large, worldwide community of scientists using the insect Drosophila melanogaster as a model organism for biomedical experimentation. The goals of the BDSC are to provide a collection of documented living stocks of broad value to current research, to preserve documented strains with clear future value, and to provide information and support services that promote maximal exploitation of these materials. These goals facilitate research by providing universal and rapid access to the most generally useful stocks, by preserving specialty genotypes with exceptional characteristics, and by providing information that helps researchers identify stocks appropriate to their needs. Drosophila is used extensively in studies of biological processes relevant to human health and investigations of molecular mechanisms underlying disease, because genetic technologies available to Drosophila researchers are among the most sophisticated in any multicellular organism. As the most comprehensive source of stocks for genetic experimentation with Drosophila, the BDSC is central to the success of many research projects including a large number of NIH grants. The first specific aim of this proposal is to continue acquiring, maintaining and distributing Drosophila strains and to continue developing associated information resources to meet the research needs of Drosophila scientists while maintaining and promoting excellent user support. Key to this aim is the administration and advancement of the highly successful cost recovery program that finances operational expenses from user fees. Consequently, the proposal focuses on support and development of the core management team as the most effective way to leverage the investment of NIH resources. The second specific aim, which will comprise 10% of grant expenditures, is to undertake research to increase the utility of the two largest subsets of BDSC stocks. Stocks carrying GAL4 or split-GAL4 transgenes are used to force expression of other transgenes in cell-specific patterns, allowing investigators to manipulate cell characteristics experimentally in otherwise normal individuals. They form the bases of many experimental approaches in Drosophila and most Drosophila models of human disease mechanisms, and the research here aims to characterize their expression patterns in the intestine, the most useful model system for studying the cell proliferation dynamics of a self-renewing epithelial tissue. Stocks carrying transgenes capable of expressing double-stranded RNAs under the control of GAL4 or split-GAL4 transgenes are used to knock down expression of specific genes via RNA interference mechanisms. A large collection of these stocks has been generated and preliminarily characterized. The research proposed here, in collaboration with the Transgenic RNAi Project at Harvard University, will evaluate the efficacy of these stocks in greater depth.

Project Start
Project End
Budget Start
2019-08-15
Budget End
2020-07-31
Support Year
6
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Indiana University Bloomington
Department
Type
DUNS #
006046700
City
Bloomington
State
IN
Country
United States
Zip Code
47401
Straub, Jonas; Konrad, Enrico D H; GrĂ¼ner, Johanna et al. (2018) Missense Variants in RHOBTB2 Cause a Developmental and Epileptic Encephalopathy in Humans, and Altered Levels Cause Neurological Defects in Drosophila. Am J Hum Genet 102:44-57
Deshpande, Nikita; Meller, Victoria H (2018) Chromatin That Guides Dosage Compensation Is Modulated by the siRNA Pathway in Drosophila melanogaster. Genetics 209:1085-1097
Lee, Pei-Tseng; Lin, Guang; Lin, Wen-Wen et al. (2018) A kinase-dependent feedforward loop affects CREBB stability and long term memory formation. Elife 7:
Sun, Qifei; Wu, Yipin; Jonusaite, Sima et al. (2018) Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule. J Am Soc Nephrol 29:1449-1461
Marxreiter, Stefanie; Thummel, Carl S (2018) Adult functions for the Drosophila DHR78 nuclear receptor. Dev Dyn 247:315-322
Hill, Vanessa M; O'Connor, Reed M; Sissoko, Gunter B et al. (2018) A bidirectional relationship between sleep and oxidative stress in Drosophila. PLoS Biol 16:e2005206
Spinner, Michael A; Walla, David A; Herman, Tory G (2018) Drosophila Syd-1 Has RhoGAP Activity That Is Required for Presynaptic Clustering of Bruchpilot/ELKS but Not Neurexin-1. Genetics 208:705-716
Gjelsvik, Kayla Jane; Follansbee, Taylor Leon; Ganter, Geoffrey Karl (2018) Bone Morphogenetic Protein Glass Bottom Boat (BMP5/6/7/8) and its receptor Wishful Thinking (BMPRII) are required for injury-induced allodynia in Drosophila. Mol Pain 14:1744806918802703
Yan, Connie; Wang, Fei; Peng, Yun et al. (2018) Microtubule Acetylation Is Required for Mechanosensation in Drosophila. Cell Rep 25:1051-1065.e6
Akbergenova, Yulia; Cunningham, Karen L; Zhang, Yao V et al. (2018) Characterization of developmental and molecular factors underlying release heterogeneity at Drosophila synapses. Elife 7:

Showing the most recent 10 out of 479 publications