A novel technician has been developed which will image physiologic characteristics and toxic radicals in living tissues of animals and humans. This information has, heretofore, been unavailable. The technique has been slowly developing in a number of laboratories throughout the world despite widespread misconceptions about the possibility of obtaining good EPR signals at such low frequencies. However, recent advances in spectroscopic technique and spin probe development, as well as the understanding of the information that can be provided, poise this technique on the verge of breakthrough. The technique uses very low frequency electron paramagnetic resonance imaging, VLF-EPRI. Very low frequency (100 to 300 MHZ) is necessary to allow the electromagnetic energy, which stimulates resonant absorption, to penetrate deep into the tissue of animals. In many applications, the spectra are derived from a non-toxic spin probe, similar or identical to magnetic resonance imaging contrast material, which is infused into animal tissues. The spin probe, similar or identical to magnetic resonance imaging contrast material, which is infused into animal tissues. The spin probe can target various fluid compartment in tissues. Changes in the spectrum of the spin probe report local oxygen concentration with high accuracy. As a byproduct of the oxygen measurement, the spectrum can also report microviscosity, which may be important for cellular proliferation. Spin labeling of medicinal agents may allow in vivo images of their pharmacodynamics. These images deep in animal tissues have been recently reported with VLF-EPRI. Both signaling and toxic free radicals can be detected with VLF-EPRI in vivo. Nitric oxide and hydroxyl radical have been detected in animal tissues with VLF-EPRI. These early measurements have been relatively crude. However, there are clear paths to improvements in physiologic sensitivity and spatial resolution by orders of magnitude. We propose the development of center facilities with an array of VLF-EPRI spectroscopic imagers to achieve this improvement in sensitivity and resolution. It would exist within a major medical center. This would offer adjacent, coordinated animal care, access to MRI/Spiral CT scanning and advanced image correlation capability. The VLF-EPRI facilities would also coordinate with spin probe and spin trap synthesis investigators to improve the general technique and tailor it to the needs of an individual researcher. We envision the development of a unique center offering researchers the capability of generating new physiologic information from VLF-EPRI.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
3P41EB002034-05S2
Application #
6950089
Study Section
Special Emphasis Panel (ZRG7)
Program Officer
Mclaughlin, Alan Charles
Project Start
1999-09-30
Project End
2005-08-31
Budget Start
2003-09-01
Budget End
2005-08-31
Support Year
5
Fiscal Year
2004
Total Cost
$686,651
Indirect Cost
Name
University of Chicago
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Qiao, Zhiwei; Redler, Gage; Gui, Zhiguo et al. (2018) Three novel accurate pixel-driven projection methods for 2D CT and 3D EPR imaging. J Xray Sci Technol 26:83-102
Buchanan, Laura A; Woodcock, Lukas B; Quine, Richard W et al. (2018) Background correction in rapid scan EPR spectroscopy. J Magn Reson 293:1-8
Kotecha, Mrignayani; Epel, Boris; Ravindran, Sriram et al. (2018) Noninvasive Absolute Electron Paramagnetic Resonance Oxygen Imaging for the Assessment of Tissue Graft Oxygenation. Tissue Eng Part C Methods 24:14-19
Qiao, Zhiwei; Redler, Gage; Qian, Yuhua et al. (2018) Investigation of the preconditioner-parameter in the preconditioned Chambolle-Pock algorithm applied to optimization-based image reconstruction. J Xray Sci Technol 26:435-448
Band, Alan; Donohue, Matthew P; Epel, Boris et al. (2018) Integration of a versatile bridge concept in a 34?GHz pulsed/CW EPR spectrometer. J Magn Reson 288:28-36
Boris, Epel; Sundramoorthy, Subramanian V; Halpern, Howard J (2017) 250 MHz passive Q-modulator for reflection resonators. Concepts Magn Reson Part B Magn Reson Eng 47B:
Epel, Boris; Sundramoorthy, Subramanian V; Krzykawska-Serda, Martyna et al. (2017) Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonance. J Magn Reson 276:31-36
Krzykawska-Serda, Martyna; Miller, Richard C; Elas, Martyna et al. (2017) Correlation Between Hypoxia Proteins and EPR-Detected Hypoxia in Tumors. Adv Exp Med Biol 977:319-325
Shi, Yilin; Quine, Richard W; Rinard, George A et al. (2017) Triarylmethyl Radical OX063d24 Oximetry: Electron Spin Relaxation at 250 MHz and RF Frequency Dependence of Relaxation and Signal-to-Noise. Adv Exp Med Biol 977:327-334
Li, Yudu; Lam, Fan; Clifford, Bryan et al. (2017) A Subspace Approach to Spectral Quantification for MR Spectroscopic Imaging. IEEE Trans Biomed Eng 64:2486-2489

Showing the most recent 10 out of 144 publications