The field of tissue engineering has been propelled in recent years by advances in cell and molecular biology, biomaterials science and engineering and bioreactor design and function. With the resulting avalanche of information, the complexity of the interactions needed to achieve desired tissue outcomes in vitro to adequately address clinical needs in vivo represents a growing challenge. It is difficult for any one laboratory to deal with all of the scientific and technological issues involved. The proposed Tissue Engineering Resource Center (TERC) will integrate cell biology, biomaterials and bioreactor systems, built upon strong core knowledge in each of these areas, to provide a systems approach to the field of tissue engineering and the associated service to address laboratory and clinical challenges. The core research projects in the Center will focus on (1) stem/progenitor cells - stem cell biology characterization expansion differentiation, (2) bioinductive scaffolds - structurally and functionally tailored, and (3) advanced bioreactors - with enhanced environmental controls and a capability for nondestructive real time assessments. A unique Center will be established and hosted by an academic consortium led by Tufts University, MIT and the University of Toronto. The Center will couple the capabilities of these laboratories through a Core Service Lab operated at Tufts to provide outside researchers full access to the latest techniques integrated in one location to solve complex challenges in the field. The Service Core will focus on the integration of scaffolds, stem cells and complex reactors to achieve new fundamental insights for use in the field, targeted tissues for clinical needs, and general service to support investigators. The Center will also interface with and complement other Centers with relevant components in tissue engineering - such as the Imaging Center at Harvard-MGH and Biomaterials Center at the NIST. The Center will host a number of collaborations with other laboratories related to specific enhancements of the core projects, such as tissue engineering of human ligaments using transfected stem cells. Information on scientific and technological advancements will be actively communicated through workshops, courses, symposia and educational outreach by the core at Tufts with additional outreach through MIT and Toronto. The Service Core will also provide essential support to help new industries in the field move ahead in the current challenging economic climate.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
5P41EB002520-04
Application #
7271857
Study Section
Special Emphasis Panel (ZRG1-BST-D (40))
Program Officer
Hunziker, Rosemarie
Project Start
2004-08-15
Project End
2009-07-31
Budget Start
2007-08-01
Budget End
2008-07-31
Support Year
4
Fiscal Year
2007
Total Cost
$753,257
Indirect Cost
Name
Tufts University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
073134835
City
Medford
State
MA
Country
United States
Zip Code
02155
Ng, Johnathan; Wei, Yiyong; Zhou, Bin et al. (2018) Ectopic implantation of juvenile osteochondral tissues recapitulates endochondral ossification. J Tissue Eng Regen Med 12:468-478
Wobma, Holly M; Kanai, Mariko; Ma, Stephen P et al. (2018) Dual IFN-?/hypoxia priming enhances immunosuppression of mesenchymal stromal cells through regulatory proteins and metabolic mechanisms. J Immunol Regen Med 1:45-56
Guenthart, Brandon A; O'Neill, John D; Kim, Jinho et al. (2018) Cell replacement in human lung bioengineering. J Heart Lung Transplant :
Reilein, Amy; Cimetta, Elisa; Tandon, Nina M et al. (2018) Live imaging of stem cells in the germarium of the Drosophila ovary using a reusable gas-permeable imaging chamber. Nat Protoc 13:2601-2614
Rodriguez, Maria J; Dixon, Thomas A; Cohen, Eliad et al. (2018) 3D freeform printing of silk fibroin. Acta Biomater 71:379-387
Ronaldson-Bouchard, Kacey; Vunjak-Novakovic, Gordana (2018) Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. Cell Stem Cell 22:310-324
Shaban, Lamyaa; Chen, Ying; Fasciano, Alyssa C et al. (2018) A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage. Anaerobe 50:85-92
Gosselin, Emily A; Torregrosa, Tess; Ghezzi, Chiara E et al. (2018) Multi-layered silk film coculture system for human corneal epithelial and stromal stem cells. J Tissue Eng Regen Med 12:285-295
Marturano-Kruik, A; Villasante, A; Yaeger, K et al. (2018) Biomechanical regulation of drug sensitivity in an engineered model of human tumor. Biomaterials 150:150-161
Cairns, Dana M; Boorgu, Devi Sai Sri Kavya; Levin, Michael et al. (2018) Niclosamide rescues microcephaly in a humanized in vivo model of Zika infection using human induced neural stem cells. Biol Open 7:

Showing the most recent 10 out of 610 publications