The Tissue Engineering Resource Center (TERC) continues to be grounded in strong foundational work on advanced biomaterials and bioreactor systems, while Technology &Research Development Projects (T&RD) have evolved along with the significant scientific and technological progress made by the Center and its many collaborators and associates.At its inception, the Center focus of the TERC research was on functional tissue engineering and regenerative medicine, through the integration of the key elements - cells, scaffolds and bioreactos, via a systems approach. In 2008, the Center was renewed for an additional five years of funding support With that renewal, the Center continue to build upon its core research to renew and refine the biomaterials, bioreactors and imaging tools while expanding its research portfolio to include more complex tissues, and more sophisticated data acquisition and control strategies. Great strides have been made toward this goal during the past eight years. Tissue engineering and regenerative medicie continue to rely on advances at the fundamental level, while supporting clinical and industrial effrts with significant impact on human health. As we look to the next five years, TERC is uniquely positined to help advance the field precisely because it maintains a core research program in the fundamental of tissue engineering (stem cell biology, tissue biomechanics, bioreactor design, biomaterials development, integration with imaging), while pushing the field forward with preclinical studies, translation activities, development of platform technologies, and disease modeling. Our research ha spawned collaborative projects, service projects, and many other opportunities that feed into our fundamental research. As we continue to develop more complex and customized biomaterial and bioreactor systems, we initiate collaborations in new tissue types and disease states. The lessons learned are expected to further strengthen the foundational research with new demands on our systems. This research feedback loop has resulted in significant advances and new directions for th Center while maintaining solid foundational work

Public Health Relevance

Tissue Engineering continues to represent a significant potential for biomedical advances. The TERC continues to support the Tissue Engineering Field in the goal of developing functional tissue grafts to improve the clinical outcomes for tissu grafting, disease modeling, and a better fundamental understanding of the engineering of biological systems.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
2P41EB002520-11
Application #
8476666
Study Section
Special Emphasis Panel (ZEB1)
Program Officer
Hunziker, Rosemarie
Project Start
2003-09-01
Project End
2019-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
11
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Tufts University
Department
Engineering (All Types)
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
City
Medford
State
MA
Country
United States
Zip Code
02155
Marturano-Kruik, A; Villasante, A; Yaeger, K et al. (2018) Biomechanical regulation of drug sensitivity in an engineered model of human tumor. Biomaterials 150:150-161
Cairns, Dana M; Boorgu, Devi Sai Sri Kavya; Levin, Michael et al. (2018) Niclosamide rescues microcephaly in a humanized in vivo model of Zika infection using human induced neural stem cells. Biol Open 7:
Zeki, Jasmine; Taylor, Jordan S; Yavuz, Burcin et al. (2018) Disseminated injection of vincristine-loaded silk gel improves the suppression of neuroblastoma tumor growth. Surgery 164:909-915
Montalbán, Mercedes G; Coburn, Jeannine M; Lozano-Pérez, A Abel et al. (2018) Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy. Nanomaterials (Basel) 8:
Saifi, Comron; Bernhard, Jonathan; Shillingford, Jamal N et al. (2018) Tissue Engineered Bone Differentiated From Human Adipose Derived Stem Cells Inhibit Posterolateral Fusion in an Athymic Rat Model. Spine (Phila Pa 1976) 43:533-541
Huang, Wenwen; Ling, Shengjie; Li, Chunmei et al. (2018) Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev 47:6486-6504
Ronaldson-Bouchard, Kacey; Ma, Stephen P; Yeager, Keith et al. (2018) Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556:239-243
Marturano-Kruik, Alessandro; Nava, Michele Maria; Yeager, Keith et al. (2018) Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proc Natl Acad Sci U S A 115:1256-1261
Algarrahi, Khalid; Affas, Saif; Sack, Bryan S et al. (2018) Repair of injured urethras with silk fibroin scaffolds in a rabbit model of onlay urethroplasty. J Surg Res 229:192-199
Algarrahi, Khalid; Franck, Debra; Savarino, Alyssa et al. (2018) Bilayer silk fibroin grafts support functional oesophageal repair in a rodent model of caustic injury. J Tissue Eng Regen Med 12:e1068-e1075

Showing the most recent 10 out of 610 publications