This Technology Research and Development (TR&D) project aims to provide advanced, quantitative body MRI methods that can quickly be integrated into clinical testing or research studies. The development of MRI methods that have clinical impact demands substantial iteration based on feedback from human studies. An integral part of this project is to work closely with numerous collaborations to speed development of highimpact imaging solutions to clinical problems. This proposal is primarily focused on techniques to image cancer, renal function and osteoarthritis-related conditions, though numerous other applications will likely emerge from the broad array of collaborations and service projects. The overall goals of this project are divided into 3 specific aims: (1) to offer a complete quantitative volumetric dynamic contrast-enhanced (DCE) acquisition, reconstruction and post-processing suite that is robust to motion, static and radiofrequency magnetic field variations and the presence of fat, (2) to develop highresolution quantitative diffusion-weighted imaging (DWI) methods that are robust to the challenges of motion in the body, and (3) to disseminate advanced musculoskeletal methods including a 5-minute 3D morphologic (fat and water) and quantitative (T2, T2* and diffusion) imaging method as well as a novel, rapid approach to distortion-corrected imaging near metallic implants. Collaborations will include numerous investigators who lead research projects and clinical services that utilize all methods in the aims. The project will leverage technology development within the Biomedical Technology Resource Center as well as other funded projects, including advanced sampling, compressed sensing, novel motion correction, multiband imaging, rapid steady-state imaging, quantitative signal model fits, and new approaches to imaging near metal. The main focus will be to combine technologies into robust implementations that can be used routinely in research studies and clinical settings.
Showing the most recent 10 out of 151 publications