The Neuroimage Analysis Center (MAC), a national resource center, is developing algorithms and image analysis software tools for improving our understanding of brain diseases and enabling innovative treatments. The focus of this competitive renewal is the creation of a new kind of atlases. These atlases will integrate information from multiple image modalities, multiple subjects, and multiple time points together with canonical knowledge of function, structure and connectivity for normal and disease populations. The proposal is organized around five cores. The White Matter Architecture from Diffusion Tensor Images Core will focus on algorithms to elucidate and quantify white matter in individuals and in groups. The fMRI Informatics Core will extract information on brain function by further developing statistical technologies for the analysis of fMRI in populations. New lines of research will focus on the analysis of multi-modal functional data, and on the relationship between structure and function. The Time-Series Analysis Core will research dynamic models of the morphological correlates of disease over time. The Clinical Computational Anatomy Core will focus on the integration of symbolic descriptions of neural systems with a new highresolution structural brain atlas. This will serve as a bridge between the declarative information in neuroscientific and disease-related databases and the morphology of subjects and populations. The Engineering Core will continue to develop and support the software environment that enables interaction between the cores and makes their scientific advances usable by biomedical scientists. The BWH team of investigators is augmented by subcontractors from MIT, GE, Isomics, and Georgia Tech, each of which provides expertise needed in our atlas creation efforts. A key deliverable of the NAC as a Resource Center is the integration of our atlas and related technology into 3D Slicer for unrestricted use, and we will continue to offer support and training at local and national venues as part of our outreach activities. Our close collaboration with clinician-scientists continues to be critical to the implementation of these tools for the purpose of understanding the brain and treating brain disorders, an important mission of NIH.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
8P41EB015902-15
Application #
8305014
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Program Officer
Pai, Vinay Manjunath
Project Start
1998-09-30
Project End
2013-07-31
Budget Start
2012-06-01
Budget End
2013-07-31
Support Year
15
Fiscal Year
2012
Total Cost
$2,118,893
Indirect Cost
$713,470
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Lyall, A E; Pasternak, O; Robinson, D G et al. (2018) Greater extracellular free-water in first-episode psychosis predicts better neurocognitive functioning. Mol Psychiatry 23:701-707
Seitz, Johanna; Rathi, Yogesh; Lyall, Amanda et al. (2018) Alteration of gray matter microstructure in schizophrenia. Brain Imaging Behav 12:54-63
Koppelmans, Vincent; Scott, Jessica M; Downs, Meghan E et al. (2018) Exercise effects on bed rest-induced brain changes. PLoS One 13:e0205515
Lasso, Andras; Nam, Hannah H; Dinh, Patrick V et al. (2018) Interaction with Volume-Rendered Three-Dimensional Echocardiographic Images in Virtual Reality. J Am Soc Echocardiogr 31:1158-1160
Guttuso Jr, T; Bergsland, N; Hagemeier, J et al. (2018) Substantia Nigra Free Water Increases Longitudinally in Parkinson Disease. AJNR Am J Neuroradiol :
Zhang, Fan; Wu, Weining; Ning, Lipeng et al. (2018) Suprathreshold fiber cluster statistics: Leveraging white matter geometry to enhance tractography statistical analysis. Neuroimage 171:341-354
Saito, Yukiko; Kubicki, Marek; Koerte, Inga et al. (2018) Impaired white matter connectivity between regions containing mirror neurons, and relationship to negative symptoms and social cognition, in patients with first-episode schizophrenia. Brain Imaging Behav 12:229-237
Black, David; Hahn, Horst K; Kikinis, Ron et al. (2018) Auditory display for fluorescence-guided open brain tumor surgery. Int J Comput Assist Radiol Surg 13:25-35
Nilsson, Markus; Larsson, Johan; Lundberg, Dan et al. (2018) Liquid crystal phantom for validation of microscopic diffusion anisotropy measurements on clinical MRI systems. Magn Reson Med 79:1817-1828
Gallardo, Guillermo; Wells 3rd, William; Deriche, Rachid et al. (2018) Groupwise structural parcellation of the whole cortex: A logistic random effects model based approach. Neuroimage 170:307-320

Showing the most recent 10 out of 252 publications