TR&D 3. Advanced Statistical Methods for Functional MRI. Principle Investigators: James J. Pekar, PhD., Associate Professor of Radiology Brian S. Caffo, Ph.D., Professor of Biostatistics SUMMARY The biological description of the brain as an evolved ensemble of distributed neural networks underlies the significance of applying imaging measures of functional connectivity to clinical research. Our collaborative projects use blood oxygenation level dependent functional MRI (BOLD fMRI) to assess changes in brain networks in autism, ADHD, Alzheimer's disease, multiple sclerosis, schizophrenia, primary progressive aphasia, and Huntington's disease, seeking to develop noninvasive imaging-based biomarkers in order to reveal disease mechanisms, improve diagnosis and prognosis, and assess therapeutic interventions. Their studies are limited by the sensitivity and specificity of BOLD fMRI acquisitions. The overarching goal of this TR&D is to work with our collaborators to enhance the sensitivity and specificity of their functional connectivity measures by developing novel empirical Bayesian analysis approaches that exploit two ongoing transformations that are dramatically improving the acquisition and availability of fMRI data, namely simultaneous multi-slice (SMS) MRI, and the availability of large public datasets. Accordingly, we have developed three specific aims: 1. To develop time-invariant approaches to autoregressive modeling, and optimize them for SMS fMRI data. 2. To develop time-invariant approaches to nuisance regression, and optimize them for SMS fMRI data. 3. To design, implement, and assess empirical Bayesian methods for combining information from large public databases with data obtained from single subject/small sample studies.

Public Health Relevance

. We are developing new analysis approaches that exploit simultaneous multislice magnetic resonance imaging and the availability of large public datasets, in order to improve the sensitivity and specificity of measures of functional connectivity in clinical populations. These developments are important to our collaborators' search for noninvasive imaging-based biomarkers that can reveal disease mechanisms, improve diagnosis and prognosis, and assess therapeutic interventions, in autism, ADHD, Alzheimer's disease, multiple sclerosis, schizophrenia, primary progressive aphasia, and Huntington's disease

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
5P41EB015909-20
Application #
9997695
Study Section
Special Emphasis Panel (ZEB1)
Project Start
2000-07-01
Project End
2021-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
20
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Hugo W. Moser Research Institute Kennedy Krieger
Department
Type
DUNS #
155342439
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Hua, Jun; Liu, Peiying; Kim, Tae et al. (2018) MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage :
Li, Yang; Mao, Deng; Li, Zhiqiang et al. (2018) Cardiac-triggered pseudo-continuous arterial-spin-labeling: A cost-effective scheme to further enhance the reliability of arterial-spin-labeling MRI. Magn Reson Med 80:969-975
Wei, Zhiliang; Xu, Jiadi; Liu, Peiying et al. (2018) Quantitative assessment of cerebral venous blood T2 in mouse at 11.7T: Implementation, optimization, and age effect. Magn Reson Med 80:521-528
Li, Wenbo; Xu, Feng; Schär, Michael et al. (2018) Whole-brain arteriography and venography: Using improved velocity-selective saturation pulse trains. Magn Reson Med 79:2014-2023
Wei, Zhiliang; Chen, Lin; Lin, Zixuan et al. (2018) Optimization of phase-contrast MRI for the estimation of global cerebral blood flow of mice at 11.7T. Magn Reson Med :
Kurcyus, Katarzyna; Annac, Efsun; Hanning, Nina M et al. (2018) Opposite Dynamics of GABA and Glutamate Levels in the Occipital Cortex during Visual Processing. J Neurosci 38:9967-9976
Deligiannidis, Kristina M; Fales, Christina L; Kroll-Desrosiers, Aimee R et al. (2018) Resting-state functional connectivity, cortical GABA, and neuroactive steroids in peripartum and peripartum depressed women: a functional magnetic imaging and resonance study. Neuropsychopharmacology :
Langkammer, Christian; Schweser, Ferdinand; Shmueli, Karin et al. (2018) Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge. Magn Reson Med 79:1661-1673
Chan, Kimberly L; Ouwerkerk, Ronald; Barker, Peter B (2018) Water suppression in the human brain with hypergeometric RF pulses for single-voxel and multi-voxel MR spectroscopy. Magn Reson Med 80:1298-1306
Miller, Michael I; Arguillère, Sylvain; Tward, Daniel J et al. (2018) Computational anatomy and diffeomorphometry: A dynamical systems model of neuroanatomy in the soft condensed matter continuum. Wiley Interdiscip Rev Syst Biol Med 10:e1425

Showing the most recent 10 out of 450 publications