Technology Research and Development Project #1 Towards Rapid Continuous Comprehensive MR Imaging: New Methods, New Paradigms, and New Applications TR&D #1 Principal Investigators: Ricardo Otazo, PhD and Daniel K. Sodickson, MD, PhD The broad mission of our Center for Advanced Imaging Innovation and Research (CAI2R) is to bring together collaborative translational research teams for the development of high-impact biomedical imaging technologies, with the ultimate goal of changing day-to-day clinical practice. Technology Research and Development (TR&D) project #1 aims at a new use of time in imaging, deploying leading-edge methods of rapid image acquisition and advanced image reconstruction to replace traditional complex, targeted, and inefficient imaging protocols with simple, comprehensive, volumetric acquisitions that contain rich information about multiple complementary contrasts and diverse dynamics.
Specific aims are as follows: (1) New methods: Develop novel rapid MR acquisition and reconstruction strategies specifically tailored to the needs of collaborative and service projects, taking advantage of compressed sensing, parallel imaging and model-based reconstruction. (2) New paradigm: Establish a new paradigm for MR scanning, using continuously-updated motion-robust comprehensive acquisitions eliminating dead time, coupled with tailored image reconstructions with user- defined contrast and spatiotemporal profiles. (3) New applications: Implement this new scanning paradigm in collaborative and service projects and evaluate its efficacy in routine patient populations for high-volume high-impact clinical applications.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1-OSR-E (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
New York
United States
Zip Code
Yoon, Jeong Hee; Lee, Jeong Min; Yu, Mi Hye et al. (2018) Evaluation of Transient Motion During Gadoxetic Acid-Enhanced Multiphasic Liver Magnetic Resonance Imaging Using Free-Breathing Golden-Angle Radial Sparse Parallel Magnetic Resonance Imaging. Invest Radiol 53:52-61
Yu, Zidan; Zhao, Tiejun; Assländer, Jakob et al. (2018) Exploring the sensitivity of magnetic resonance fingerprinting to motion. Magn Reson Imaging 54:241-248
Burke, Christopher J; Kaplan, Daniel; Block, Tobias et al. (2018) Clinical Utility of Continuous Radial Magnetic Resonance Imaging Acquisition at 3 T in Real-time Patellofemoral Kinematic Assessment: A Feasibility Study. Arthroscopy 34:726-733
Fieremans, Els; Lee, Hong-Hsi (2018) Physical and numerical phantoms for the validation of brain microstructural MRI: A cookbook. Neuroimage 182:39-61
Benkert, Thomas; Mugler 3rd, John P; Rigie, David S et al. (2018) Hybrid T2 - and T1 -weighted radial acquisition for free-breathing abdominal examination. Magn Reson Med 80:1935-1948
Ianniello, Carlotta; de Zwart, Jacco A; Duan, Qi et al. (2018) Synthesized tissue-equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions. Magn Reson Med 80:413-419
Paška, Jan; Cloos, Martijn A; Wiggins, Graham C (2018) A rigid, stand-off hybrid dipole, and birdcage coil array for 7 T body imaging. Magn Reson Med 80:822-832
Chen, Gang; Collins, Christopher M; Sodickson, Daniel K et al. (2018) A method to assess the loss of a dipole antenna for ultra-high-field MRI. Magn Reson Med 79:1773-1780
Piekarski, Eve; Chitiboi, Teodora; Ramb, Rebecca et al. (2018) Two-dimensional XD-GRASP provides better image quality than conventional 2D cardiac cine MRI for patients who cannot suspend respiration. MAGMA 31:49-59
Lattanzi, Riccardo; Wiggins, Graham C; Zhang, Bei et al. (2018) Approaching ultimate intrinsic signal-to-noise ratio with loop and dipole antennas. Magn Reson Med 79:1789-1803

Showing the most recent 10 out of 168 publications