Technology Research and Development Project #1 Towards Rapid Continuous Comprehensive MR Imaging: New Methods, New Paradigms, and New Applications TR&D #1 Principal Investigators: Ricardo Otazo, PhD and Daniel K. Sodickson, MD, PhD The broad mission of our Center for Advanced Imaging Innovation and Research (CAI2R) is to bring together collaborative translational research teams for the development of high-impact biomedical imaging technologies, with the ultimate goal of changing day-to-day clinical practice. Technology Research and Development (TR&D) project #1 aims at a new use of time in imaging, deploying leading-edge methods of rapid image acquisition and advanced image reconstruction to replace traditional complex, targeted, and inefficient imaging protocols with simple, comprehensive, volumetric acquisitions that contain rich information about multiple complementary contrasts and diverse dynamics.
Specific aims are as follows: (1) New methods: Develop novel rapid MR acquisition and reconstruction strategies specifically tailored to the needs of collaborative and service projects, taking advantage of compressed sensing, parallel imaging and model-based reconstruction. (2) New paradigm: Establish a new paradigm for MR scanning, using continuously-updated motion-robust comprehensive acquisitions eliminating dead time, coupled with tailored image reconstructions with user- defined contrast and spatiotemporal profiles. (3) New applications: Implement this new scanning paradigm in collaborative and service projects and evaluate its efficacy in routine patient populations for high-volume high-impact clinical applications.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
1P41EB017183-01A1
Application #
8794073
Study Section
Special Emphasis Panel (ZEB1-OSR-E (O1))
Project Start
Project End
Budget Start
2014-09-30
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$324,636
Indirect Cost
$83,169
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Menon, Rajiv G; Sharafi, Azadeh; Windschuh, Johannes et al. (2018) Bi-exponential 3D-T1? mapping of whole brain at 3?T. Sci Rep 8:1176
Chen, Lihua; Liu, Daihong; Zhang, Jiuquan et al. (2018) Free-breathing dynamic contrast-enhanced MRI for assessment of pulmonary lesions using golden-angle radial sparse parallel imaging. J Magn Reson Imaging 48:459-468
Zibetti, Marcelo V W; Baboli, Rahman; Chang, Gregory et al. (2018) Rapid compositional mapping of knee cartilage with compressed sensing MRI. J Magn Reson Imaging 48:1185-1198
Liu, Andrea L; Mikheev, Artem; Rusinek, Henry et al. (2018) REnal Flow and Microstructure AnisotroPy (REFMAP) MRI in Normal and Peritumoral Renal Tissue. J Magn Reson Imaging 48:188-197
Bertrand, Anne; Baron, Maria; Hoang, Dung M et al. (2018) In Vivo Evaluation of Neuronal Transport in Murine Models of Neurodegeneration Using Manganese-Enhanced MRI. Methods Mol Biol 1779:527-541
Xia, Ding; Lee, Jae-Seung; Regatte, Ravinder R (2018) Quadrupolar jump-and-return pulse sequence for fluid-suppressed sodium MRI of the knee joint at 7T. Magn Reson Med 80:641-647
Nunes Neto, Lucidio P; Madelin, Guillaume; Sood, Terlika Pandit et al. (2018) Quantitative sodium imaging and gliomas: a feasibility study. Neuroradiology 60:795-802
Sharafi, Azadeh; Chang, Gregory; Regatte, Ravinder R (2018) Biexponential T2 relaxation estimation of human knee cartilage in vivo at 3T. J Magn Reson Imaging 47:809-819
Chen, Gang; Zhang, Bei; Cloos, Martijn A et al. (2018) A highly decoupled transmit-receive array design with triangular elements at 7T. Magn Reson Med 80:2267-2274
Assländer, Jakob; Cloos, Martijn A; Knoll, Florian et al. (2018) Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med 79:83-96

Showing the most recent 10 out of 168 publications