Technology Research and Development Project #3 Advancing MR and PET Through Synergistic Simultaneous Acquisition and Joint Reconstruction TR&D #3 Principal Investigators: Fernando Boada, PhD, Yu-Shin Ding, PhD, and Johan Nuyts, PhD The broad mission of our Center for Advanced Imaging Innovation and Research (CAI2R) is to bring together collaborative translational research teams for the development of high-impact biomedical imaging technologies, with the ultimate goal of changing day-to-day clinical practice. Technology Research and Development (TR&D) project #3 is addressed at new uses of simultaneity, advancing the fundamental capabilities of MR and PET through synergistic simultaneous acquisition and joint reconstruction.
Specific aims are as follows: (1) Develop MR-based motion correction algorithms for PET. (2) Develop constrained reconstruction approaches for PET and combined MR-PET. (3) Develop and validate integrated physiological modeling for concurrently acquired MR and PET data. (4) Develop MR-PET tracers to support collaborative and service projects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
1P41EB017183-01A1
Application #
8794075
Study Section
Special Emphasis Panel (ZEB1-OSR-E (O1))
Project Start
Project End
Budget Start
2014-09-30
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$486,632
Indirect Cost
$123,476
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Ianniello, Carlotta; de Zwart, Jacco A; Duan, Qi et al. (2018) Synthesized tissue-equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions. Magn Reson Med 80:413-419
Benkert, Thomas; Mugler 3rd, John P; Rigie, David S et al. (2018) Hybrid T2 - and T1 -weighted radial acquisition for free-breathing abdominal examination. Magn Reson Med 80:1935-1948
Chen, Gang; Collins, Christopher M; Sodickson, Daniel K et al. (2018) A method to assess the loss of a dipole antenna for ultra-high-field MRI. Magn Reson Med 79:1773-1780
Paška, Jan; Cloos, Martijn A; Wiggins, Graham C (2018) A rigid, stand-off hybrid dipole, and birdcage coil array for 7 T body imaging. Magn Reson Med 80:822-832
Lattanzi, Riccardo; Wiggins, Graham C; Zhang, Bei et al. (2018) Approaching ultimate intrinsic signal-to-noise ratio with loop and dipole antennas. Magn Reson Med 79:1789-1803
Piekarski, Eve; Chitiboi, Teodora; Ramb, Rebecca et al. (2018) Two-dimensional XD-GRASP provides better image quality than conventional 2D cardiac cine MRI for patients who cannot suspend respiration. MAGMA 31:49-59
Storey, Pippa; Gonen, Oded; Rosenkrantz, Andrew B et al. (2018) Quantitative Proton Spectroscopy of the Testes at 3 T: Toward a Noninvasive Biomarker of Spermatogenesis. Invest Radiol 53:87-95
Feng, Li; Coppo, Simone; Piccini, Davide et al. (2018) 5D whole-heart sparse MRI. Magn Reson Med 79:826-838
Benkert, Thomas; Tian, Ye; Huang, Chenchan et al. (2018) Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding. Magn Reson Med 80:286-293
Wake, Nicole; Chandarana, Hersh; Rusinek, Henry et al. (2018) Accuracy and precision of quantitative DCE-MRI parameters: How should one estimate contrast concentration? Magn Reson Imaging 52:16-23

Showing the most recent 10 out of 168 publications