The broad mission of our Center for Advanced Imaging Innovation and Research (CAI2R) is to bring together collaborative translational research teams for the development of high-impact biomedical imaging technologies, with the ultimate goal of changing day-to-day clinical practice. Technology Research and Development (TR&D) Project 3 aims to exploit unique synergies between Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET), in order to improve and inform imaging-based evaluations of tissue structure and function in disease. Using modern methods of machine learning and other enabling hardware and software, we will combine these two complementary imaging modalities much as distinct sensory modalities are combined into a multifaceted multisensory stream. Concrete outcomes of our work will include 1) new techniques and technologies for motion correction in MR and PET; 2) new algorithms for the extraction of complementary information from MR and PET acquisitions; 3) new tracers that are tailored for combined MR-PET scanning rather than merely being addressed at traditional molecular targets; and 4) new means of elucidating the intrinsic structure and function of tissue.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
5P41EB017183-07
Application #
9996681
Study Section
Special Emphasis Panel (ZEB1)
Project Start
2014-09-30
Project End
2024-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
7
Fiscal Year
2020
Total Cost
Indirect Cost
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Sbrizzi, Alessandro; Heide, Oscar van der; Cloos, Martijn et al. (2018) Fast quantitative MRI as a nonlinear tomography problem. Magn Reson Imaging 46:56-63
Lakshmanan, Karthik; Brown, Ryan; Madelin, Guillaume et al. (2018) An eight-channel sodium/proton coil for brain MRI at 3 T. NMR Biomed 31:
Winters, Kerryanne V; Reynaud, Olivier; Novikov, Dmitry S et al. (2018) Quantifying myofiber integrity using diffusion MRI and random permeable barrier modeling in skeletal muscle growth and Duchenne muscular dystrophy model in mice. Magn Reson Med 80:2094-2108
Hammernik, Kerstin; Klatzer, Teresa; Kobler, Erich et al. (2018) Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 79:3055-3071
Vaidya, Manushka V; Lazar, Mariana; Deniz, Cem M et al. (2018) Improved detection of fMRI activation in the cerebellum at 7T with dielectric pads extending the imaging region of a commercial head coil. J Magn Reson Imaging 48:431-440
Kirov, Ivan I; Kuzniecky, Ruben; Hetherington, Hoby P et al. (2018) Whole brain neuronal abnormalities in focal epilepsy quantified with proton MR spectroscopy. Epilepsy Res 139:85-91
Feng, Li; Huang, Chenchan; Shanbhogue, Krishna et al. (2018) RACER-GRASP: Respiratory-weighted, aortic contrast enhancement-guided and coil-unstreaking golden-angle radial sparse MRI. Magn Reson Med 80:77-89
Wadghiri, Youssef Z; Hoang, Dung Minh; Leporati, Anita et al. (2018) High-resolution Imaging of Myeloperoxidase Activity Sensors in Human Cerebrovascular Disease. Sci Rep 8:7687
Haemer, Gillian G; Vaidya, Manushka; Collins, Christopher M et al. (2018) Approaching ultimate intrinsic specific absorption rate in radiofrequency shimming using high-permittivity materials at 7 Tesla. Magn Reson Med 80:391-399
Vaidya, Manushka V; Deniz, Cem M; Collins, Christopher M et al. (2018) Manipulating transmit and receive sensitivities of radiofrequency surface coils using shielded and unshielded high-permittivity materials. MAGMA 31:355-366

Showing the most recent 10 out of 168 publications