Neurological disorders affect millions of people in the United States and worldwide. Better understanding of the short-term changes and the persistent changes that result from precisely targeted electrical stimulation of brain networks can lead to novel technologies that improve diagnosis and treatment of these disorders. Intracranial recording/stimulation techniques using electrocorticographic (ECoG) electrodes on the brain surface and/or depth electrodes (stereoencephalography (SEEG)) provide a powerful method for spatially and temporally precise recording and stimulation, but current stimulation protocols are based largely on trial-and-error and thus are probably suboptimal. Taking optimal advantage of ECoG/SEEG requires the ability to design adaptive record- ing/stimulation protocols that induce speci?c bene?cial changes in the brain processes underlying behavior. The work proposed here will address this need by creating a stimulation-based system that can map cortical/subcortical functional networks and can modulate these networks so as to restore brain function. TR&D3's long-term goal is to develop and iteratively optimize a new generation of adaptive neurotechnologies that can introduce predictable changes in brain networks, and to clinically test the ef?cacy of those technologies for alleviating the devastating effects of neurological disorders such as stroke. To achieve this goal, TR&D3 has two Speci?c Aims:
Aim 1. To establish the short-term changes in network activity and resulting behavior that are produced by electrical stimulation.
Aim 1 comprises two studies. The ?rst study will use electrical stimulation to establish which and how brain networks are activated by electrical stimulation of speci?c locations. The second study will determine how input produced by electrical stimulation interacts with moment-by-moment variations in cortical excitability to produce population-level responses.
Aim 2. To establish the persistent changes to network activity resulting from electrical stimulation. The ?rst study will determine to what extent stimulus-induced changes modify behavior in the short term and the long-term. The second study will assess the dependence of these changes on stimulus amplitude. These two aims will produce a stimulation-based functional imaging system. To validate and optimize this novel system, TR&D3 will engage in two collaborative projects with scientists at the University of California (Berkeley) and at MIT. Together, these collaborations will establish the effectiveness and value of the new stimulation-based functional imaging system. By accomplishing these aims, TR&D3 should produce new understanding of how electrical stimulation produces short-term and persistent changes in brain function. It should also create a new clinical system that can map brain networks and can target speci?c bene?cial changes in function. Thus, this work should increase scienti?c understanding and enhance treatment for a range of neurological disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
7P41EB018783-07
Application #
10017992
Study Section
Special Emphasis Panel (ZEB1)
Project Start
2014-09-10
Project End
2020-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
7
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Albany Research Institute, Inc.
Department
Type
DUNS #
834679706
City
Albany
State
NY
Country
United States
Zip Code
12208
Thompson, Aiko K; Carruth, Hannah; Haywood, Rachel et al. (2018) Effects of Sensorimotor Rhythm Modulation on the Human Flexor Carpi Radialis H-Reflex. Front Neurosci 12:505
Norman, S L; McFarland, D J; Miner, A et al. (2018) Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke. J Neural Eng 15:056026
Eftekhar, Amir; Norton, James J S; McDonough, Christine M et al. (2018) Retraining Reflexes: Clinical Translation of Spinal Reflex Operant Conditioning. Neurotherapeutics :
Kapeller, C; Ogawa, H; Schalk, G et al. (2018) Real-time detection and discrimination of visual perception using electrocorticographic signals. J Neural Eng 15:036001
Norton, James J S; Wolpaw, Jonathan R (2018) Acquisition, Maintenance, and Therapeutic Use of a Simple Motor Skill. Curr Opin Behav Sci 20:138-144
Norton, James J S; Mullins, Jessica; Alitz, Birgit E et al. (2018) The performance of 9-11-year-old children using an SSVEP-based BCI for target selection. J Neural Eng 15:056012
Swift, J R; Coon, W G; Guger, C et al. (2018) Passive functional mapping of receptive language areas using electrocorticographic signals. Clin Neurophysiol 129:2517-2524
Li, Guangye; Jiang, Shize; Paraskevopoulou, Sivylla E et al. (2018) Optimal referencing for stereo-electroencephalographic (SEEG) recordings. Neuroimage 183:327-335
Wolpaw, Jonathan R (2018) The negotiated equilibrium model of spinal cord function. J Physiol 596:3469-3491
Saez, Ignacio; Lin, Jack; Stolk, Arjen et al. (2018) Encoding of Multiple Reward-Related Computations in Transient and Sustained High-Frequency Activity in Human OFC. Curr Biol 28:2889-2899.e3

Showing the most recent 10 out of 75 publications