Glycosaminoglycans (GAGs), such as heparin, heparan sulfate (HS), and chondroitin sulfate (CS), are naturally occurring polydisperse linear polysaccharides that are heavily O- and N-sulfated. The interaction between GAGs and proteins are critical for many biological processes including cell-cell and cell-matrix interactions, cell migration and proliferation, growth factor sequestration, chemokine and cytokine activation, microbial recognition and tissue morphogenesis during embryonic development. Hundreds of HS-binding proteins have been identified, but the oligosaccharide structures that mediate particular interactions have been defined in only a few cases due to the structural complexity of HS. These challenges will be achieved through activities in three Technology Research and Development (TR&D) projects that will be applied to the study of several Driving Biomedical Projects (DBPs) that will act as test beds for the utility of the integrated approaches and provide feedback for new challenges that will spur further technology development. As the technologies mature they will be applied to Collaborative projects and routine use in analytical Services (C&S) that will also extend the utility of the technologies to a broader scientific community. Multiple strategies for Dissemination will increase awareness and access to the technology developments and our Training courses (D&T) will provide direct opportunities for researchers to learn the latest technology developments from Resource staff. The diverse goals of the Resource require a well-structured administration and management organization with clearly defined staff responsibilities. Administration and Management of the overall technologies within the Resource will be directed by the PI with the assistance of a Steering Committee comprised of the TR&D project coordinators and an External Advisory Committee. Oversight of the TR&Ds, DBPs, C&S, Training and Dissemination will involve project coordinators and dedicated technical staff to facilitate the most efficient use of resources to advance and apply the technologies within the broad scientific community. Thus, aims for the Administration and Management of the Resource are proposed to: (1) Establish and maintain an effective administrative organization with responsibilities for oversight of Resource operations, (2) Establish and continue resource communication and evaluation procedure, (3) Provide oversight through meetings with an External Advisory Committee (EAC).
Amon, Ron; Grant, Oliver C; Leviatan Ben-Arye, Shani et al. (2018) A combined computational-experimental approach to define the structural origin of antibody recognition of sialyl-Tn, a tumor-associated carbohydrate antigen. Sci Rep 8:10786 |
Lu, Weigang; Zong, Chengli; Chopra, Pradeep et al. (2018) Controlled Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides. Angew Chem Int Ed Engl 57:5340-5344 |
Xu, Xianzhong; Eletsky, Alexander; Sheikh, M Osman et al. (2018) Glycosylation Promotes the Random Coil to Helix Transition in a Region of a Protist Skp1 Associated with F-Box Binding. Biochemistry 57:511-515 |
Zhao, Yuejie; Yang, Jeong Yeh; Thieker, David F et al. (2018) A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction. J Am Soc Mass Spectrom 29:1153-1165 |
Gas-Pascual, Elisabet; Ichikawa, Hiroshi Travis; Sheikh, Mohammed Osman et al. (2018) CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology. J Biol Chem : |
Epp, Alexandra; Hobusch, Juliane; Bartsch, Yannic C et al. (2018) Sialylation of IgG antibodies inhibits IgG-mediated allergic reactions. J Allergy Clin Immunol 141:399-402.e8 |
Flanagan-Steet, Heather; Christian, Courtney; Lu, Po-Nien et al. (2018) TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development. Cell Rep 22:2964-2977 |
Talsma, Ditmer T; Katta, Kirankumar; Ettema, Marieke A B et al. (2018) Endothelial heparan sulfate deficiency reduces inflammation and fibrosis in murine diabetic nephropathy. Lab Invest 98:427-438 |
Zhang, Peng; Lu, Hong; Peixoto, Rui T et al. (2018) Heparan Sulfate Organizes Neuronal Synapses through Neurexin Partnerships. Cell 174:1450-1464.e23 |
Schmalstig, Alan A; Benoit, Stéphane L; Misra, Sandeep K et al. (2018) A Non-catalytic Antioxidant Role for Helicobacter pylori Urease. J Bacteriol : |
Showing the most recent 10 out of 246 publications