Synchrotron radiation (SR) is an extremely bright and tunable x-ray source that enables forefront research in structural molecular biology (SMB). A ?Synchrotron Structural Biology Resource is proposed for continuing support at the Stanford Synchrotron Radiation Lightsource (SSRL) by the NIH NIGMS and DOE BER to develop new technologies in macromolecular crystallography, x-ray absorption/emission spectroscopy and small angle x-ray scattering/diffraction, to train/support users, and to disseminate the newly developed capabilities to the biomedical research community. This proposal is for the continued funding, operation and future development of this SMB Resource. New initiatives will capitalize on the increasing SR performance of SSRL?s 3rd generation storage ring SPEAR3. Proposed also is the development of selected SMB applications of LCLS. A principal aim is to optimize experimental facilities and instrumentation, detectors, software and compute performance on the SMB Resource?s 9+ beam lines at SSRL (with another two in construction) to take full advantage of the high brightness provided by SPEAR3 at 500 mA current and provide innovative new instrumentation and methodologies. This will enable the SMB Resource to advance the scientific forefront with new initiatives built upon state-of-the-art instrumentation and methodologies, innovative software and automated/high-throughput systems for: studying high resolution structures/function of large, complex biomolecules and molecular machines; investigating fundamental questions in biophysics such as protein folding; and developing/improving methods for studying very fast time-resolved structural changes in chemical and biological systems with ultrafast or fast scattering and spectroscopy techniques. These scientific advancements will be facilitated by parallel developments in software to provide expanded capabilities for instrument and detector control, remote data collection and real-time data analysis. Driving biomedical projects and collaborative research and service programs involving a large number of outside scientists will drive and support core technological developments.
Rege, Nischay K; Wickramasinghe, Nalinda P; Tustan, Alisar N et al. (2018) Structure-based stabilization of insulin as a therapeutic protein assembly via enhanced aromatic-aromatic interactions. J Biol Chem 293:10895-10910 |
Ellis, Bryan D; Milligan, Jacob C; White, Alexander R et al. (2018) An Oxetane-Based Polyketide Surrogate To Probe Substrate Binding in a Polyketide Synthase. J Am Chem Soc 140:4961-4964 |
Enriquez Garcia, Alejandra; Jalilehvand, Farideh; Niksirat, Pantea et al. (2018) Methionine Binding to Dirhodium(II) Tetraacetate. Inorg Chem 57:12787-12799 |
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657 |
Snyder, Benjamin E R; Böttger, Lars H; Bols, Max L et al. (2018) Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane. Proc Natl Acad Sci U S A 115:4565-4570 |
Chen, Qiang; Wells, Marta M; Arjunan, Palaniappa et al. (2018) Structural basis of neurosteroid anesthetic action on GABAA receptors. Nat Commun 9:3972 |
Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto et al. (2018) Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes. Phys Rev Lett 120:133203 |
Magherusan, Adriana M; Zhou, Ang; Farquhar, Erik R et al. (2018) Mimicking Class?I?b Mn2 -Ribonucleotide Reductase: A MnII2 Complex and Its Reaction with Superoxide. Angew Chem Int Ed Engl 57:918-922 |
Glasser, Nathaniel R; Oyala, Paul H; Osborne, Thomas H et al. (2018) Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations. Proc Natl Acad Sci U S A 115:E8614-E8623 |
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22 |
Showing the most recent 10 out of 686 publications