: Over the next five years the NIGMS P41 Proteomics Research Center for Integrative Biology Technology Research and Development (TR&D) efforts will focus on the needs of the biomedical research community in the context of Driving Biomedical Projects (DBPs) and collaborative projects that challenge the Center's technical capabilities. The three tightly integrated TR&Ds emphasize approaches for broadly characterizing proteins that include analysis of specific functions and activities, post-translational modifications, and other proteoforms;instrumental developments that enable more sensitive, quantitative, and high throughput proteomic measurements, including analyses of very small samples;and development of computational capabilities that provide improved quantitative proteomics measurements and facilitate proteomics data interpretation and subsequent integration with other data types, as well as their dissemination. The Center's technology developments will be evaluated in the context of a geographically diverse set of DBPs selected on the basis of their scientific and biomedical relevance, as well as their capacity to benefit from the Center's capabilities. These projects are essential to the Center, providing both direction for the early stage TR&D activities and test-beds for the developing technologies. The scope of the new DBP applications include the areas of protein quantification in signal transduction pathways, lipid-binding protein receptors, proteomic analysis of single pancreatic islets in diabetes, neuroproteomics, microbiome impact on lung transplant stability, oncogene regulation by PTMs, characterization of the intestinal host-pathogen interactome, embryonic survival and implantation, and functional annotation of drug resistant Mtb strains. In addition to these DBPs will be a host of new collaborative and service projects that benefit from distinct Center capabilities. The Center will train researchers in the ue of the adva

Public Health Relevance

Advances in instrumentation, experimental approaches, and methods for improving both data quality and integration, will lead to sensitive, quantitative measurements ofthe true proteome. Molecular insights on the nature and operation of cells, signaling pathways/networks, and other processes relevant to human health and disease state progression will be revealed. The Center serves the biomedical community by developing, integrating, and disseminating proteomic technologies for important biological applications.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BST-N (40))
Program Officer
Sheeley, Douglas
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Battelle Pacific Northwest Laboratories
United States
Zip Code
Petyuk, Vladislav A; Chang, Rui; Ramirez-Restrepo, Manuel et al. (2018) The human brainome: network analysis identifies HSPA2 as a novel Alzheimer’s disease target. Brain 141:2721-2739
Rodland, Karin D; Piehowski, Paul; Smith, Richard D (2018) Moonshot Objectives: Catalyze New Scientific Breakthroughs-Proteogenomics. Cancer J 24:121-125
Yi, Lian; Shi, Tujin; Gritsenko, Marina A et al. (2018) Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway. Anal Chem 90:5256-5263
Kyle, Jennifer E; Aly, Noor; Zheng, Xueyun et al. (2018) Evaluating lipid mediator structural complexity using ion mobility spectrometry combined with mass spectrometry. Bioanalysis 10:279-289
Zhu, Ying; Zhao, Rui; Piehowski, Paul D et al. (2018) Subnanogram proteomics: impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples. Int J Mass Spectrom 427:4-10
Menachery, Vineet D; Schäfer, Alexandra; Burnum-Johnson, Kristin E et al. (2018) MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proc Natl Acad Sci U S A 115:E1012-E1021
Khanova, Elena; Wu, Raymond; Wang, Wen et al. (2018) Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients. Hepatology 67:1737-1753
Zhang, Tong; Gaffrey, Matthew J; Thrall, Brian D et al. (2018) Mass spectrometry-based proteomics for system-level characterization of biological responses to engineered nanomaterials. Anal Bioanal Chem 410:6067-6077
Bilbao, Aivett; Gibbons, Bryson C; Slysz, Gordon W et al. (2018) An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies. Int J Mass Spectrom 427:91-99
Dou, Maowei; Chouinard, Christopher D; Zhu, Ying et al. (2018) Nanowell-mediated multidimensional separations combining nanoLC with SLIM IM-MS for rapid, high-peak-capacity proteomic analyses. Anal Bioanal Chem :

Showing the most recent 10 out of 238 publications