Since its inception, the Yeast Resource Center has focused on understanding how genome sequence relates to protein function. The Center began just as budding yeast became the first eukaryote to have its genome sequence completed, and we proposed to use an array of technologies to interpret this sequence. In this application, we undertake novel challenges, centered on understanding how variation in proteins affects their levels, modification, function and structure. We will develop new technologies in three areas: 1) Perturbing and sensing changes to complex pathways; 2) Protein detection and quantitation by mass spectrometry; and 3) Higher order protein structure. These technologies will be driven by ten closely integrated Driving Biomedical Projects. Yeast remains an unparalleled experimental system to develop, test and refine these technologies. As the technologies mature, we will extend their application to higher eukaryotes through internal projects and external collaborations. Furthermore, we make our technologies available as they become robust, through broad collaboration and a well-established track record of dissemination and training.

Public Health Relevance

Our resource is focused on the development of technologies to be used for improving our understanding how genome sequence relates to protein function. This research has played a critical role in the understanding of protein and cellular function. While developed and validated in yeast, these methods impact all aspects of biology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103533-24
Application #
9900797
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Brown, Patrick
Project Start
1997-09-30
Project End
2022-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
24
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Helgeson, Luke A; Zelter, Alex; Riffle, Michael et al. (2018) Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments. Proc Natl Acad Sci U S A 115:2740-2745
Fong, Kimberly K; Zelter, Alex; Graczyk, Beth et al. (2018) Novel phosphorylation states of the yeast spindle pole body. Biol Open 7:
González, Delfina P; Lamb, Helen V; Partida, Diana et al. (2018) CBD-1 organizes two independent complexes required for eggshell vitelline layer formation and egg activation in C. elegans. Dev Biol 442:288-300
Basisty, Nathan B; Liu, Yuxin; Reynolds, Jason et al. (2018) Stable Isotope Labeling Reveals Novel Insights Into Ubiquitin-Mediated Protein Aggregation With Age, Calorie Restriction, and Rapamycin Treatment. J Gerontol A Biol Sci Med Sci 73:561-570
Brandsen, Benjamin M; Mattheisen, Jordan M; Noel, Teia et al. (2018) A Biosensor Strategy for E. coli Based on Ligand-Dependent Stabilization. ACS Synth Biol 7:1990-1999
Ma, Yuanhui; Yates 3rd, John R (2018) Proteomics and pulse azidohomoalanine labeling of newly synthesized proteins: what are the potential applications? Expert Rev Proteomics 15:545-554
Tseng, Boo Shan; Reichhardt, Courtney; Merrihew, Gennifer E et al. (2018) A Biofilm Matrix-Associated Protease Inhibitor Protects Pseudomonas aeruginosa from Proteolytic Attack. MBio 9:
Yates 3rd, John R (2018) Content Is King: Databases Preserve the Collective Information of Science. J Biomol Tech 29:1-3
DaRosa, Paul A; Harrison, Joseph S; Zelter, Alex et al. (2018) A Bifunctional Role for the UHRF1 UBL Domain in the Control of Hemi-methylated DNA-Dependent Histone Ubiquitylation. Mol Cell 72:753-765.e6
Xu, Yi; Ju, Ho-Jong; DeBlasio, Stacy et al. (2018) A Stem-Loop Structure in Potato Leafroll Virus Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 Bases Upstream. J Virol 92:

Showing the most recent 10 out of 372 publications