Most essential proteins perform their function as part of a protein complex. Many such complexes are large, multi-subunit entities whose structures are well beyond the capabilities of traditional methods of structural determination. This TR&D builds upon previous pioneering achievements by the YRC in developing novel techniques to determine the structure of proteins and protein complexes. We will develop an arsenal of new techniques that will complement current methods of structural determination, empowering the scientific community to address structural questions that were previously out of reach.
In Specific Aim 1, we will develop our already highly successful protein cross-linking/mass spectrometry (XL-MS) technology to: (1) Facilitate its adoption throughout the scientific community through development of a quality control toolkit; (2) Increase its sensitivity through improved fragmentation of cross-linked peptides; (3) Incorporate quantitative capabilities allowing XL-MS to be used to study dynamic populations of protein complex conformations and; (4) Develop a comprehensive set of computational tools to identify cross-linked peptides and statistically validate those identifications.
In Specific Aim 2, we will develop a complementary method, molecular painting, which will allow the determination of surface-surface interactions in protein complexes ? even in vivo where current techniques such as HD exchange cannot be applied. In our third and final specific aim we will use co-evolution data to model protein structures and interfaces based on covariation of pairs of residues. We will develop technology to apply deep mutational scanning data (a technology developed in the YRC) to model protein interfaces if sufficient sequences are not available for co-evolution methods to be used. We will integrate these predictions with data generated by cross-linking and molecular painting. Through these aims we will drive the field of higher order protein structure determination into the future.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103533-24
Application #
9900805
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
24
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Jester, Benjamin W; Tinberg, Christine E; Rich, Matthew S et al. (2018) Engineered Biosensors from Dimeric Ligand-Binding Domains. ACS Synth Biol 7:2457-2467
Kim, Yeoun Jin; Sweet, Steve M; Egertson, Jarrett D et al. (2018) Data-independent acquisition mass spectrometry to quantify protein levels in FFPE tumor biopsies for molecular diagnostics. J Proteome Res :
Keich, Uri; Noble, William Stafford (2018) Controlling the FDR in imperfect matches to an incomplete database. J Am Stat Assoc 113:973-982
Louka, Panagiota; Vasudevan, Krishna Kumar; Guha, Mayukh et al. (2018) Proteins that control the geometry of microtubules at the ends of cilia. J Cell Biol 217:4298-4313
Searle, Brian C; Pino, Lindsay K; Egertson, Jarrett D et al. (2018) Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nat Commun 9:5128
Payea, Matthew J; Sloma, Michael F; Kon, Yoshiko et al. (2018) Widespread temperature sensitivity and tRNA decay due to mutations in a yeast tRNA. RNA 24:410-422
Seixas, Adriana; Alzugaray, MarĂ­a Fernanda; Tirloni, Lucas et al. (2018) Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 9:72-81
Luan, Qing; Zelter, Alex; MacCoss, Michael J et al. (2018) Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex. Proc Natl Acad Sci U S A 115:E1409-E1418
Smukowski Heil, Caiti; Burton, Joshua N; Liachko, Ivan et al. (2018) Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. Yeast 35:71-84
Ziegler, Yvonne S; Moresco, James J; Tu, Patricia G et al. (2018) Proteomic analysis identifies highly expressed plasma membrane proteins for detection and therapeutic targeting of specific breast cancer subtypes. Clin Proteomics 15:30

Showing the most recent 10 out of 372 publications