In our efforts to develop a simple assay for determining the number of free cysteines in a protein, we have focused on the use of p-hydroxymercuribenzoic acid (pHMB). This reagent is advantageous because it has a high affinity for free sulfhydryl groups, yet will form a covalent bond with only one sulfhydryl, in contrast to mercuric ions which have a tendency to form a bridge between two separate sulfhydryl groups. Adduct formation with pHMB exaggerates the mass difference between a cystine and an equivalent pair of cysteines. In some cases, pHMB reacts well with cysteine but in other cases, the derivatization is far from complete, in which case, it is difficult to assess how many free sulfhydryl groups are in the protein. To develop a more reliable assay, we are investigating means by which to drive the pHMB reaction further toward completion. A 100-fold molar excess of pHMB improves the extent of derivatization, but requires removal of the excess before the mixture can be analyzed by MALDI. Furthermore, the multiply derivatized forms of the protein which differ in mass by 321 Da can be difficult to resolve above the 10-kDa level. These investigations will continue with heavier organomercurials and with delayed extraction in MALDI to improve the resolving power.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000480-27
Application #
5220519
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
27
Fiscal Year
1996
Total Cost
Indirect Cost
Peri, S P; Bhadti, V S; Somerville-Armstrong, K S et al. (1999) Affinity reagents for cross-linking hemoglobin: bis(phenoxycarbonylethyl)phosphinic acid (BPCEP) and bis(3-nitrophenoxycarbonylethyl)phosphinic acid (BNCEP). Hemoglobin 23:1-20
Chen, H M; Sood, R; Hosmane, R S (1999) An efficient, short synthesis and potent anti-hepatitis B viral activity of a novel ring-expanded purine nucleoside analogue containing a 5:7-fused, planar, aromatic, imidazo[4,5-e][1,3]diazepine ring system. Nucleosides Nucleotides 18:331-5
Bretner, M; Beckett, T D; Sood, R K et al. (1999) Substrate/inhibition studies of bacteriophage T7 RNA polymerase with the 5'-triphosphate derivative of a ring-expanded ('fat') nucleoside possessing potent antiviral and anticancer activities. Bioorg Med Chem 7:2931-6
Agasimundin, Y S; Mumper, M W; Hosmane, R S (1998) Inhibitors of glycogen phosphorylase b: synthesis, biochemical screening, and molecular modeling studies of novel analogues of hydantocidin. Bioorg Med Chem 6:911-23
Hosmane, R S; Peri, S P; Bhadti, V S et al. (1998) Bis[2-(4-carboxyphenoxy)carbonylethyl]phosphinic acid (BCCEP): a novel affinity reagent for the beta-cleft modification of human hemoglobin. Bioorg Med Chem 6:767-83
Rajappan, V P; Hosmane, R S (1998) Analogues of azepinomycin as inhibitors of guanase. Nucleosides Nucleotides 17:1141-51
Hosmane, R S; Hong, M (1997) How important is the N-3 sugar moiety in the tight-binding interaction of coformycin with adenosine deaminase? Biochem Biophys Res Commun 236:88-93
Lopez-Lara, I M; Orgambide, G; Dazzo, F B et al. (1993) Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from acacia nodules. J Bacteriol 175:2826-32
Watson, J T; Kayganich, K (1989) Novel sample preparation for analysis by electron capture negative ionization mass spectrometry. Biochem Soc Trans 17:254-7
Kassel, D B; Kayganich, K A; Watson, J T et al. (1988) Utility of ion source pretreatment with chlorine-containing compounds for enhanced performance in gas chromatography/negative ionization mass spectrometry. Anal Chem 60:911-7

Showing the most recent 10 out of 11 publications