The goal of this project is to assess the utility of ion/atom reactions in the elucidation of macromolecular structures that are refractory to the classical approach of collisionally activated dissociation (CAD). The thesis is that the reactivity of radicals such as the free hydrogen atom will stimulate cleavages of a peptide or protein molecule in a non-mass dependent manner, and thereby offer advantages in structure elucidation not achievable by CAD. A Varian Saturn I Ion Trap Mass Spectrometer has been modified to accommodate a microwave generator which will dissociate hydrogen gas into hydrogen atoms for direct injection into the ion trap volume. Other flanges have been mounted on the ion trap vacuum jacket to accommodate the introduction of a small sample probe and a window for laser irradiation to provide MALDI of peptides of up to mass 600 for preliminary studies. Preliminary experiments have shown that we can successfully generate the microwave discharge at sufficiently low pressures to be compatible with the interface to the vacuum system of the ion trap mass spectrometer. In addition, we have demonstrated that successful operation of the ion trap mass spectrometer is not adversely affected by the microwave discharge nor by the high pressure or increased gas load of hydrogen from the microwave discharge interface.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000480-27
Application #
5220527
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
27
Fiscal Year
1996
Total Cost
Indirect Cost
Peri, S P; Bhadti, V S; Somerville-Armstrong, K S et al. (1999) Affinity reagents for cross-linking hemoglobin: bis(phenoxycarbonylethyl)phosphinic acid (BPCEP) and bis(3-nitrophenoxycarbonylethyl)phosphinic acid (BNCEP). Hemoglobin 23:1-20
Chen, H M; Sood, R; Hosmane, R S (1999) An efficient, short synthesis and potent anti-hepatitis B viral activity of a novel ring-expanded purine nucleoside analogue containing a 5:7-fused, planar, aromatic, imidazo[4,5-e][1,3]diazepine ring system. Nucleosides Nucleotides 18:331-5
Bretner, M; Beckett, T D; Sood, R K et al. (1999) Substrate/inhibition studies of bacteriophage T7 RNA polymerase with the 5'-triphosphate derivative of a ring-expanded ('fat') nucleoside possessing potent antiviral and anticancer activities. Bioorg Med Chem 7:2931-6
Agasimundin, Y S; Mumper, M W; Hosmane, R S (1998) Inhibitors of glycogen phosphorylase b: synthesis, biochemical screening, and molecular modeling studies of novel analogues of hydantocidin. Bioorg Med Chem 6:911-23
Hosmane, R S; Peri, S P; Bhadti, V S et al. (1998) Bis[2-(4-carboxyphenoxy)carbonylethyl]phosphinic acid (BCCEP): a novel affinity reagent for the beta-cleft modification of human hemoglobin. Bioorg Med Chem 6:767-83
Rajappan, V P; Hosmane, R S (1998) Analogues of azepinomycin as inhibitors of guanase. Nucleosides Nucleotides 17:1141-51
Hosmane, R S; Hong, M (1997) How important is the N-3 sugar moiety in the tight-binding interaction of coformycin with adenosine deaminase? Biochem Biophys Res Commun 236:88-93
Lopez-Lara, I M; Orgambide, G; Dazzo, F B et al. (1993) Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from acacia nodules. J Bacteriol 175:2826-32
Watson, J T; Kayganich, K (1989) Novel sample preparation for analysis by electron capture negative ionization mass spectrometry. Biochem Soc Trans 17:254-7
Kassel, D B; Kayganich, K A; Watson, J T et al. (1988) Utility of ion source pretreatment with chlorine-containing compounds for enhanced performance in gas chromatography/negative ionization mass spectrometry. Anal Chem 60:911-7

Showing the most recent 10 out of 11 publications