The spindle pole body (SPB) is the major microtubule organizing center of budding yeasts and is the functional equivalent of the centrosome in higher eukaryotes. We are using fast-frozen, freeze-substituted cells in conjunction with HVEM tomography to study the fine structure of the SPB and the events of early spindle formation. The SPB is organized from distinct layers that are physically coupled; it is anchored in the nuclear envelope membrane with hook-like structures. Individual microtubules (MTs) and their interactions within the nucleoplasm are imaged at 5-10 nm 3-D resolution, significantly better than that achieved by conventional electron microscopy. MT minus ends are capped and are tethered to the SPB inner plaque, whereas the majority of nuclear MTs have a distinct flaring at their plus ends. Unbudded yeast cells containing a single SPB retain 16 MTs, enough to attach to each of the expected 16 chromosomes. Their median length is ~150 nm. MTs growing from duplicated but not separated SPBs have a median length of ~130 nm and interdigitate over the bridge. As a bipolar spindle is formed the median MT length increases to ~300nm, then decreases dramatically to ~30 nm in cells in late anaphase. 3-D models confirm that there is no conventional metaphase and that anaphase A occurs. These studies complement and extend what is known about the 3-D structure of the yeast mitotic spindle by furthering our understanding of the organization of the SPB in intact cells (See Research Highlight #3).

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000592-29
Application #
6117483
Study Section
Project Start
1998-12-01
Project End
1999-11-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
29
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Colorado at Boulder
Department
Type
DUNS #
City
Boulder
State
CO
Country
United States
Zip Code
80309
Giddings Jr, Thomas H; Morphew, Mary K; McIntosh, J Richard (2017) Preparing Fission Yeast for Electron Microscopy. Cold Spring Harb Protoc 2017:
Zhao, Xiaowei; Schwartz, Cindi L; Pierson, Jason et al. (2017) Three-Dimensional Structure of the Ultraoligotrophic Marine Bacterium ""Candidatus Pelagibacter ubique"". Appl Environ Microbiol 83:
Brown, Joanna R; Schwartz, Cindi L; Heumann, John M et al. (2016) A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J Struct Biol 194:38-48
Saheki, Yasunori; Bian, Xin; Schauder, Curtis M et al. (2016) Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat Cell Biol 18:504-15
Höög, Johanna L; Lacomble, Sylvain; Bouchet-Marquis, Cedric et al. (2016) 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction. PLoS Negl Trop Dis 10:e0004312
Park, J Genevieve; Palmer, Amy E (2015) Properties and use of genetically encoded FRET sensors for cytosolic and organellar Ca2+ measurements. Cold Spring Harb Protoc 2015:pdb.top066043
McCoy, Kelsey M; Tubman, Emily S; Claas, Allison et al. (2015) Physical limits on kinesin-5-mediated chromosome congression in the smallest mitotic spindles. Mol Biol Cell 26:3999-4014
Höög, Johanna L; Lötvall, Jan (2015) Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J Extracell Vesicles 4:28680
Marc, Robert E; Anderson, James R; Jones, Bryan W et al. (2014) The AII amacrine cell connectome: a dense network hub. Front Neural Circuits 8:104
Weber, Britta; Tranfield, Erin M; Höög, Johanna L et al. (2014) Automated stitching of microtubule centerlines across serial electron tomograms. PLoS One 9:e113222

Showing the most recent 10 out of 84 publications