This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We are using cryofixed, freeze-substituted cells to study the morphology of kinetochores and their associated microtubule (MT) in mitotic cells. We have developed successful methods for preparing well-frozen mitotic cells (Morphew and McIntosh, J. Micros 212:21-25). 3-D reconstructions of kinetochores from several species have been obtained using dual-axis tomography. The structures of kinetochore-associated MT ends have been oriented and extracted using the """"""""slicer"""""""" tool in IMOD. The walls of most kinetochore MTs flare outward at their plus ends, a morphology characteristic of disassembling MTs in vitro (Mandelkow et al., JCB 114:977, 1991). The degree of flaring has been quantified and found to be similarly distributed at all mitotic stages. These findings suggest that flaring in vivo is not simply indicative of disassembly, but may reflect a different dynamic state that can be controlled by other cellular processes. The regions around kinetochore MTs contain slender fibrils that appear to connect the MT walls in the centromeric heterochromatin. These findings suggest a novel mechanism for the binding of chromosomes to the mitotic spindle.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000592-40
Application #
8170820
Study Section
Special Emphasis Panel (ZRG1-CB-J (40))
Project Start
2010-05-01
Project End
2011-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
40
Fiscal Year
2010
Total Cost
$12,451
Indirect Cost
Name
University of Colorado at Boulder
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
007431505
City
Boulder
State
CO
Country
United States
Zip Code
80309
Giddings Jr, Thomas H; Morphew, Mary K; McIntosh, J Richard (2017) Preparing Fission Yeast for Electron Microscopy. Cold Spring Harb Protoc 2017:
Zhao, Xiaowei; Schwartz, Cindi L; Pierson, Jason et al. (2017) Three-Dimensional Structure of the Ultraoligotrophic Marine Bacterium ""Candidatus Pelagibacter ubique"". Appl Environ Microbiol 83:
Brown, Joanna R; Schwartz, Cindi L; Heumann, John M et al. (2016) A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J Struct Biol 194:38-48
Saheki, Yasunori; Bian, Xin; Schauder, Curtis M et al. (2016) Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat Cell Biol 18:504-15
Höög, Johanna L; Lacomble, Sylvain; Bouchet-Marquis, Cedric et al. (2016) 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction. PLoS Negl Trop Dis 10:e0004312
Park, J Genevieve; Palmer, Amy E (2015) Properties and use of genetically encoded FRET sensors for cytosolic and organellar Ca2+ measurements. Cold Spring Harb Protoc 2015:pdb.top066043
McCoy, Kelsey M; Tubman, Emily S; Claas, Allison et al. (2015) Physical limits on kinesin-5-mediated chromosome congression in the smallest mitotic spindles. Mol Biol Cell 26:3999-4014
Höög, Johanna L; Lötvall, Jan (2015) Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J Extracell Vesicles 4:28680
Marc, Robert E; Anderson, James R; Jones, Bryan W et al. (2014) The AII amacrine cell connectome: a dense network hub. Front Neural Circuits 8:104
Weber, Britta; Tranfield, Erin M; Höög, Johanna L et al. (2014) Automated stitching of microtubule centerlines across serial electron tomograms. PLoS One 9:e113222

Showing the most recent 10 out of 84 publications