We are presently investigating the mechanisms of programmed cell death PCD by identifying stable structural domains within apoptotic effectors and their targets. Two pathways are currently investigated--the CD95/Fas/APO-1 pathyway and the TNFR-1 pathway. Fas-mediated is dependent on the recruitment of effector molecules to transmit the signal received by the receptor to the PCD enzymes (so-called caspases). The effectors FADD, RIP, Mort1 and RAIDD are all presently under study to identify the stable functional domains utilizing a combination of proteolysis/MALDI mass spectrometry in conjuunction with in vitro and in vivo functional assays of the identified pieces. Subsequent to confirmation of functional domains, the complex structures will be determined using a combination of multi-nuclear NMR and/or X-ray crystallography. In a related pathway, a second receptor system centered around TNFR-1 is being investigated, both for its ability to stimulate death as well as to activate the NF-kappaB pathway. In this regard, the effectors TRADD and the TRAF proteins are under study in an effort to elucidate their opposing effects on the cellular life cycle. Again, the goal is to deconstruct the system into the relevant parts and determine th e structures of the functional complexes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000862-25
Application #
6279482
Study Section
Project Start
1997-12-01
Project End
1998-11-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
25
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Rockefeller University
Department
Type
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C et al. (2017) Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding. Anal Biochem 519:38-41
Boice, Michael; Salloum, Darin; Mourcin, Frederic et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 167:405-418.e13
Chait, Brian T; Cadene, Martine; Olinares, Paul Dominic et al. (2016) Revealing Higher Order Protein Structure Using Mass Spectrometry. J Am Soc Mass Spectrom 27:952-65
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface. J Am Soc Mass Spectrom 26:649-58
Mast, Fred D; Rachubinski, Richard A; Aitchison, John D (2015) Signaling dynamics and peroxisomes. Curr Opin Cell Biol 35:131-6
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Optimizing electrospray interfaces using slowly diverging conical duct (ConDuct) electrodes. J Am Soc Mass Spectrom 26:659-67
Zhong, Yu; Morris, Deanna H; Jin, Lin et al. (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021-37
Oricchio, Elisa; Papapetrou, Eirini P; Lafaille, Fabien et al. (2014) A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep 8:1677-1685
Xue, John Z; Woo, Eileen M; Postow, Lisa et al. (2013) Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev Cell 27:47-59
Indiani, Chiara; O'Donnell, Mike (2013) A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 18:312-23

Showing the most recent 10 out of 67 publications