This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 15% of acute myeloid leukemia (AML)cases. This study shows that AML1-ETO, as well as ETO, inhibits transcriptional activation by E proteins through stable interactions that preclude recruitment of p300/CREB-binding protein (CBP) coactivators. These interactions are mediated by a conserved ETO TAF4 homology domain and a 17?amino acid p300/CBP and ETO target motif within AD1 activation domains of E proteins. In t(8;21) leukemic cells, very stable interactions between AML1-ETO and E proteins underlie a t(8;21) translocation-specific silencing of E protein function through an aberrant cofactor exchange mechanism. These studies identify E proteins as AML1-ETO targets whose dysregulation may be important for t(8;21) leukemogenesis, as well as an E protein silencing mechanism that is distinct fromthat associated with differentiation-inhibitory proteins.
Showing the most recent 10 out of 67 publications