This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Cyclin-dependent kinase 5 (cdk5) is a protein kinase that regulates neuronal structure in the central nervous system. It is active only when paired with a regulatory partner; one such partner is known as p35. When stressed, neurons are believed to cause calpain-mediated cleavage of p35 to a smaller form known as p25. Increased levels of p25 are associated with Alzheimer's disease and have also have been linked, along with increased cdk5 activity, to amyotrophic lateral sclerosis. We are exploring phosphorylation of the cdk5/p35 complex since the kinase appears to be regulated by its phosphorylation state. Incubation of kinase preparations in vitro with ATP results in the phosphorylation of at least two sites within p35 and seven sites within cdk5, as analyzed by mass spectrometry. The exact site of phosphorylation has been determined in some cases, while others are currently being mapped. We are also conducting experiments to determine whether autophosphorylation or phosphorylation due to another kinase co-purified with the cdk5/p35 complex is being observed.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR000862-34
Application #
7597426
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2007-05-01
Project End
2008-02-29
Budget Start
2007-05-01
Budget End
2008-02-29
Support Year
34
Fiscal Year
2007
Total Cost
$1,883
Indirect Cost
Name
Rockefeller University
Department
Miscellaneous
Type
Other Domestic Higher Education
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C et al. (2017) Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding. Anal Biochem 519:38-41
Boice, Michael; Salloum, Darin; Mourcin, Frederic et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 167:405-418.e13
Chait, Brian T; Cadene, Martine; Olinares, Paul Dominic et al. (2016) Revealing Higher Order Protein Structure Using Mass Spectrometry. J Am Soc Mass Spectrom 27:952-65
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface. J Am Soc Mass Spectrom 26:649-58
Mast, Fred D; Rachubinski, Richard A; Aitchison, John D (2015) Signaling dynamics and peroxisomes. Curr Opin Cell Biol 35:131-6
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Optimizing electrospray interfaces using slowly diverging conical duct (ConDuct) electrodes. J Am Soc Mass Spectrom 26:659-67
Oricchio, Elisa; Papapetrou, Eirini P; Lafaille, Fabien et al. (2014) A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep 8:1677-1685
Zhong, Yu; Morris, Deanna H; Jin, Lin et al. (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021-37
Xue, John Z; Woo, Eileen M; Postow, Lisa et al. (2013) Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev Cell 27:47-59
Indiani, Chiara; O'Donnell, Mike (2013) A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 18:312-23

Showing the most recent 10 out of 67 publications