This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We describe a prototype tandem mass spectrometer that is designed to increase the efficiency of linked-scan analyses by >100-fold over conventional linked-scan instruments. The key element of the mass spectrometer is a novel high ion capacity ion trap, combined in tandem configuration with a quadrupole collision cell and a quadrupole mass analyzer (i.e. a TrapqQ configuration). This ion trap can store >106 ions without significant degradation of its performance. The current mass resolution of the trap is 100?450 full width at half maximum for ions in the range 800?4000 m/z, yielding a 10?20 m/z selection window for ions ejected at any given time into the collision cell. The sensitivity of the mass spectrometer for detecting peptides is in the low femtomole range. We can envisage relatively straightforward modifications to the instrument that should improve both its resolution and sensitivity. We tested the tandem mass spectrometer for collecting precursor ion spectra of all the ions stored in the trap and demonstrated that we can selectively detect a phosphopeptide in a mixture of non-phosphorylated peptides. Based on this prototype instrument, we plan to construct a fully functional model of the mass spectrometer for detecting modification sites on proteins and profiling their abundances with high speed and sensitivity. Currently we are testing a second generation instrument coupled to an orthogonal time-of-flight analyzer for accurate mass readout of both the parent and fragment ions. Towards this goal we have: We have optimized the high capacity ion trap and the adjacent collision cell by incorporating a cylinder housing to use different gases. This will give us control over pressure in each region and allow us to use different gases in each region for better ion cooling. We changed our original quadrupole collision cell to a linearly accelerating (LINAC) collision cell. In the LINAC a small axial electric field is applied to the collision cell by inserting a T electrode with a DC gradient. This will minimize the residence time in LINAC and increase overall transmission efficiency. We shortened the entire instrument by removing several unnecessary quadrupoles. This will increase the overall transmission efficiency.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000862-37
Application #
8169101
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2010-03-01
Project End
2011-02-28
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
37
Fiscal Year
2010
Total Cost
$55,846
Indirect Cost
Name
Rockefeller University
Department
Miscellaneous
Type
Other Domestic Higher Education
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C et al. (2017) Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding. Anal Biochem 519:38-41
Boice, Michael; Salloum, Darin; Mourcin, Frederic et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 167:405-418.e13
Chait, Brian T; Cadene, Martine; Olinares, Paul Dominic et al. (2016) Revealing Higher Order Protein Structure Using Mass Spectrometry. J Am Soc Mass Spectrom 27:952-65
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface. J Am Soc Mass Spectrom 26:649-58
Mast, Fred D; Rachubinski, Richard A; Aitchison, John D (2015) Signaling dynamics and peroxisomes. Curr Opin Cell Biol 35:131-6
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Optimizing electrospray interfaces using slowly diverging conical duct (ConDuct) electrodes. J Am Soc Mass Spectrom 26:659-67
Oricchio, Elisa; Papapetrou, Eirini P; Lafaille, Fabien et al. (2014) A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep 8:1677-1685
Zhong, Yu; Morris, Deanna H; Jin, Lin et al. (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021-37
Xue, John Z; Woo, Eileen M; Postow, Lisa et al. (2013) Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev Cell 27:47-59
Indiani, Chiara; O'Donnell, Mike (2013) A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 18:312-23

Showing the most recent 10 out of 67 publications