This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The external electric field induces a separation of cations from negative electrolyte ions in the infusate while differential ionization of molecular species that possess differential electrical propensities can be induced in either the positive- or negative-ion mode during the electrospray ionization process. These physical and electrical processes that occur in the electrospray ion source have been used to selectively ionize lipid classes possessing different electrical propensities that are now known as 'intrasource separation and selective ionization'. However, the chemical principles underlying charge-dependent alterations in ionization efficiencies responsible for the selective ionization of lipid classes are not known with certainty. Herein, we examined the multiple factors that contribute to intrasource separation and selective ionization of lipid classes under optimal instrumental conditions. We demonstrated that many different lipid classes could be selectively ionized in the ion source and that intrasource resolution of distinct molecular constituents was independent of lipid concentration, flow rate, and residual ions under most experimental conditions. Moreover, the presence of alkaline conditions facilitates the selective ionization of many lipid classes through a mechanism independent of the design of the ESI ion source.
Showing the most recent 10 out of 696 publications