This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Research in the Soslau laboratory has focused primarily on varying aspects of human platelet biochemistry. The anucleated platelet, derived from the normal fragmentation of the megakaryocyte cytoplasm, along with the coagulation cascade plays a central role in hemostasis. Several different physiological agonists induce platelets to aggregate forming a protective clot with the coagulation-induced fibrin at sites of vascular injury. Selected platelet agonists (thrombin) and surface receptors have long been pharmacologic targets for regulating platelet activation and reducing abnormal hemostatic events, thrombosis. We have shown that there are three distinct thrombin receptors on human platelets that could be activated by different physiological forms of thrombin. These different forms of thrombin respond differentially to many clinically employed antithrombotic drugs that had been presumed to inhibit all levels of thrombin-induced platelet aggregation. Understanding how each form of thrombin and their respective thrombin receptors work in the activation of platelets is crucial to fine tuning the clinical regulation of hemostasis and thrombosis. Studies are also being conducted with human, sea turtle and avian blood to define similarities and differences of platelet/coagulation components involved in hemostasis. Where possible, components are analyzed for structure/function and if major similarities or differences are detected genes will be cloned/sequenced. Ultimately we are interested in evolutionary correlations of sequence/structure/function that may give insights into how mutations in selected human hemostatastic components lead to genetic diseases.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR000954-33
Application #
8168772
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2010-03-10
Project End
2010-12-31
Budget Start
2010-03-10
Budget End
2010-12-31
Support Year
33
Fiscal Year
2010
Total Cost
$191
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Yue, Xuyi; Dhavale, Dhruva D; Li, Junfeng et al. (2018) Design, synthesis, and in vitro evaluation of quinolinyl analogues for ?-synuclein aggregation. Bioorg Med Chem Lett 28:1011-1019
Ohlemacher, Shannon I; Giblin, Daryl E; d'Avignon, D André et al. (2017) Enterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria. J Clin Invest 127:4018-4030
Lin, Xiaobo; Racette, Susan B; Ma, Lina et al. (2017) Endogenous Cholesterol Excretion Is Negatively Associated With Carotid Intima-Media Thickness in Humans. Arterioscler Thromb Vasc Biol 37:2364-2369
Ovod, Vitaliy; Ramsey, Kara N; Mawuenyega, Kwasi G et al. (2017) Amyloid ? concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 13:841-849
Cade, W Todd; Levy, Philip T; Tinius, Rachel A et al. (2017) Markers of maternal and infant metabolism are associated with ventricular dysfunction in infants of obese women with type 2 diabetes. Pediatr Res 82:768-775
Lucey, Brendan P; Mawuenyega, Kwasi G; Patterson, Bruce W et al. (2017) Associations Between ?-Amyloid Kinetics and the ?-Amyloid Diurnal Pattern in the Central Nervous System. JAMA Neurol 74:207-215
Wei, Xiaochao; Song, Haowei; Yin, Li et al. (2016) Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539:294-298
Shields-Cutler, Robin R; Crowley, Jan R; Miller, Connelly D et al. (2016) Human Metabolome-derived Cofactors Are Required for the Antibacterial Activity of Siderocalin in Urine. J Biol Chem 291:25901-25910
Mertins, Philipp; Mani, D R; Ruggles, Kelly V et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55-62
Murata, Takahiro; Dietrich, Hans H; Horiuchi, Tetsuyoshi et al. (2016) Mechanisms of magnesium-induced vasodilation in cerebral penetrating arterioles. Neurosci Res 107:57-62

Showing the most recent 10 out of 696 publications