This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The Mauer group is interested in using chemical methods to understand problems in neurobiology and development, as well as exploiting neurobiology to construct biosensors. In general, answers to the biological questions addressed by the group are not accessible using traditional biological techniques. As a result, the group makes use of chemical approaches and a variety of tools to gain new insights into complex biological problems. The tools we use to address these problems include synthetic organic chemistry, surface chemistry, biochemistry, molecular biology, and cell biology. The Mauer group is specifically interested in Ion-Channel Biosensors, Neuronal Differentiation, and Neuronal Wiring and Development. Human brains consist of an enormous number of neurons that interact with each other in very specific and complex ways to give rise to human thought and function. Neurons within this network are guided to make specific connections through a variety of chemical signals that include small molecules, soluble proteins, and proteins presented on the surface of other cells. The Mauer lab is interested in developing minimal models to understand neuronal guidance by spatially patterning guidance cues. Patterning is achieved through the creation of photopatternable self-assembled monolayers (SAMs) on gold, aluminum oxide, and titanium oxide. The use of organic photochemistry allows multiple proteins to be easily presented on a single culture surface. Our chemical approach to this problem allows construction of complex model neuronal networks that cannot be achieved using traditional methods.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR000954-33
Application #
8168773
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2010-03-10
Project End
2010-12-31
Budget Start
2010-03-10
Budget End
2010-12-31
Support Year
33
Fiscal Year
2010
Total Cost
$4,271
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Yue, Xuyi; Dhavale, Dhruva D; Li, Junfeng et al. (2018) Design, synthesis, and in vitro evaluation of quinolinyl analogues for ?-synuclein aggregation. Bioorg Med Chem Lett 28:1011-1019
Ohlemacher, Shannon I; Giblin, Daryl E; d'Avignon, D André et al. (2017) Enterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria. J Clin Invest 127:4018-4030
Lin, Xiaobo; Racette, Susan B; Ma, Lina et al. (2017) Endogenous Cholesterol Excretion Is Negatively Associated With Carotid Intima-Media Thickness in Humans. Arterioscler Thromb Vasc Biol 37:2364-2369
Ovod, Vitaliy; Ramsey, Kara N; Mawuenyega, Kwasi G et al. (2017) Amyloid ? concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 13:841-849
Cade, W Todd; Levy, Philip T; Tinius, Rachel A et al. (2017) Markers of maternal and infant metabolism are associated with ventricular dysfunction in infants of obese women with type 2 diabetes. Pediatr Res 82:768-775
Lucey, Brendan P; Mawuenyega, Kwasi G; Patterson, Bruce W et al. (2017) Associations Between ?-Amyloid Kinetics and the ?-Amyloid Diurnal Pattern in the Central Nervous System. JAMA Neurol 74:207-215
Wei, Xiaochao; Song, Haowei; Yin, Li et al. (2016) Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539:294-298
Shields-Cutler, Robin R; Crowley, Jan R; Miller, Connelly D et al. (2016) Human Metabolome-derived Cofactors Are Required for the Antibacterial Activity of Siderocalin in Urine. J Biol Chem 291:25901-25910
Mertins, Philipp; Mani, D R; Ruggles, Kelly V et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55-62
Murata, Takahiro; Dietrich, Hans H; Horiuchi, Tetsuyoshi et al. (2016) Mechanisms of magnesium-induced vasodilation in cerebral penetrating arterioles. Neurosci Res 107:57-62

Showing the most recent 10 out of 696 publications