This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The high excitation energy transfer efficiency observed in photosynthetic organisms relies on the optimal pigment-protein binding geometry in the individual protein complexes and also on the overall architecture of photosystems. In green sulfur bacteria, the membrane-attached Fenna-Matthews-Olson (FMO) antenna protein functions as a """"""""wire"""""""" to connect the large peripheral chlorosome antenna complex with the reaction center (RC), which is embedded in the cytoplasmic membrane. Energy collected by the chlorosome is funneled through the FMO to the RC. Significant effort has been expanded to understand the relationship between structure and function of the individual isolated particles. The question of how the FMO protein interacts with the membrane and the chlorosome in vivo to maintain a specific architecture to ensure the highly efficient energy transfer pathway, however, has not been answered.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000954-34
Application #
8361378
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2011-01-01
Project End
2011-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
34
Fiscal Year
2011
Total Cost
$12,589
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Yue, Xuyi; Dhavale, Dhruva D; Li, Junfeng et al. (2018) Design, synthesis, and in vitro evaluation of quinolinyl analogues for ?-synuclein aggregation. Bioorg Med Chem Lett 28:1011-1019
Ohlemacher, Shannon I; Giblin, Daryl E; d'Avignon, D André et al. (2017) Enterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria. J Clin Invest 127:4018-4030
Lin, Xiaobo; Racette, Susan B; Ma, Lina et al. (2017) Endogenous Cholesterol Excretion Is Negatively Associated With Carotid Intima-Media Thickness in Humans. Arterioscler Thromb Vasc Biol 37:2364-2369
Ovod, Vitaliy; Ramsey, Kara N; Mawuenyega, Kwasi G et al. (2017) Amyloid ? concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 13:841-849
Cade, W Todd; Levy, Philip T; Tinius, Rachel A et al. (2017) Markers of maternal and infant metabolism are associated with ventricular dysfunction in infants of obese women with type 2 diabetes. Pediatr Res 82:768-775
Lucey, Brendan P; Mawuenyega, Kwasi G; Patterson, Bruce W et al. (2017) Associations Between ?-Amyloid Kinetics and the ?-Amyloid Diurnal Pattern in the Central Nervous System. JAMA Neurol 74:207-215
Wei, Xiaochao; Song, Haowei; Yin, Li et al. (2016) Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539:294-298
Shields-Cutler, Robin R; Crowley, Jan R; Miller, Connelly D et al. (2016) Human Metabolome-derived Cofactors Are Required for the Antibacterial Activity of Siderocalin in Urine. J Biol Chem 291:25901-25910
Mertins, Philipp; Mani, D R; Ruggles, Kelly V et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55-62
Murata, Takahiro; Dietrich, Hans H; Horiuchi, Tetsuyoshi et al. (2016) Mechanisms of magnesium-induced vasodilation in cerebral penetrating arterioles. Neurosci Res 107:57-62

Showing the most recent 10 out of 696 publications