The low-density lipoprotein receptor (LDLR) is the primary mechanism for the uptake of plasma cholesterol into cells and serves as a prototype for a growing family of cell surface receptors. These receptors all utilize tandemly-repeated LDL-A modules to bind their ligands. Each LDL-A module is about 40 residues long, has 6 conserved cysteine residues and contains a conserved acidic region near the C-terminus that serves as a calcium binding site. The structure of the interface presented for ligand binding by these modules, and the basis for their specificity and affinity in ligand binding, is not yet known. We have purified recombinant molecules corresponding to LDL-A modules five (LR5), six (LR6*), as well as the module five-six pair (LR5-6*) of the LDL receptor. Calcium is required to establish native disulfide bonds and to maintain the structural integrity of LR5, LR6*, and the LR5-6* module pair. Comparison of proton and multidimensional heteronuclear NMR spectra of individual modules to those of the module pair indicates that most of the significant spectroscopic changes lie within the linker region between modules and that little structural interaction occurs between the cores of modules 5 and 6 in the 5-6 pair. These findings strongly support a model in which each module is essentially structurally independent of the other. Assignments for the backbone and for most of the side chain resonances are complete for LR5, LR6*, and for the LR5-6* module pair. Current efforts are focused on completion of the side chain assignments and calculation of the solution structures of LR6* and LR5-6*. I

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000995-25
Application #
6355151
Study Section
Project Start
2000-05-01
Project End
2001-04-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
25
Fiscal Year
2000
Total Cost
$2,140
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Marintchev, Assen; Edmonds, Katherine A; Marintcheva, Boriana et al. (2009) Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 136:447-60
Frueh, Dominique P; Arthanari, Haribabu; Koglin, Alexander et al. (2009) A double TROSY hNCAnH experiment for efficient assignment of large and challenging proteins. J Am Chem Soc 131:12880-1
Frueh, Dominique P; Leed, Alison; Arthanari, Haribabu et al. (2009) Time-shared HSQC-NOESY for accurate distance constraints measured at high-field in (15)N-(13)C-ILV methyl labeled proteins. J Biomol NMR 45:311-8
Lentz, Margaret R; Westmoreland, Susan V; Lee, Vallent et al. (2008) Metabolic markers of neuronal injury correlate with SIV CNS disease severity and inoculum in the macaque model of neuroAIDS. Magn Reson Med 59:475-84
Hyberts, Sven G; Heffron, Gregory J; Tarragona, Nestor G et al. (2007) Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc 129:5108-16
Chen, Jingyang; Dupradeau, Francois-Yves; Case, David A et al. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4'-oxidized abasic sites. Biochemistry 46:3096-107
Lentz, Margaret R; Kim, John P; Westmoreland, Susan V et al. (2005) Quantitative neuropathologic correlates of changes in ratio of N-acetylaspartate to creatine in macaque brain. Radiology 235:461-8
Kim, John P; Lentz, Margaret R; Westmoreland, Susan V et al. (2005) Relationships between astrogliosis and 1H MR spectroscopic measures of brain choline/creatine and myo-inositol/creatine in a primate model. AJNR Am J Neuroradiol 26:752-9
Peled, S; Cory, D G; Raymond, S A et al. (1999) Water diffusion, T(2), and compartmentation in frog sciatic nerve. Magn Reson Med 42:911-8
Mo, H; Dai, Y; Pochapsky, S S et al. (1999) 1H, 13C and 15N NMR assignments for a carbon monoxide generating metalloenzyme from Klebsiella pneumoniae. J Biomol NMR 14:287-8

Showing the most recent 10 out of 12 publications