Currently, the best polarization mechanism for DNP at 5 Tesla is the thermal mixing effect using 4-amino TEMPO free radical as polarizing agent. 'H-signal enhancements of up to F-=300-400 have been observed after microwave irradiation for 120 seconds. The experiment has to be carried out at low temperatures (T=12-20 K) in order to have sufficiently long nuclear relaxation times. However, at the same time the build up kinetic of the nuclear polarization is rather slow. The time constant was found to be aboutr=230 s at these temperatures. Clearly, it is desirable to have faster transfer mechanisms allowing for better sensitivity. We have studied the thennal mixing transfer kinetics for different TEMPO derivates in order to get a better understanding of the transfer mechanism. We found that thermal mixing with 4hydroxy TEMPO as polarizing agent allows a much faster polarizing rate (,r=41 s) with a comparable signal enhancement to 4-amino TEMPO. Experiments can, therefore, be performed at a higher repetition rate allowing for better S/N per unit time. We also started to perform experiments using other transfer pathways than those used with the currently available polarization mechanisms. Cross polarization under matched Hartmann-Hahn conditions should allow a polarization transfer on the timescale of several gs, the inverse of the hyperfine coupling strength. This type of experiment requires fast phase switching and strong fields on both the EPR and NMR channel and became possible with the newly developed high Q double resonance resonator (see subproject 'An Electron Nuclear Double Resonance Resonatorfor DNP and ENDOR at 5 Tesla').

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000995-26
Application #
6449566
Study Section
Project Start
2001-05-01
Project End
2002-04-30
Budget Start
Budget End
Support Year
26
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Marintchev, Assen; Edmonds, Katherine A; Marintcheva, Boriana et al. (2009) Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 136:447-60
Frueh, Dominique P; Arthanari, Haribabu; Koglin, Alexander et al. (2009) A double TROSY hNCAnH experiment for efficient assignment of large and challenging proteins. J Am Chem Soc 131:12880-1
Frueh, Dominique P; Leed, Alison; Arthanari, Haribabu et al. (2009) Time-shared HSQC-NOESY for accurate distance constraints measured at high-field in (15)N-(13)C-ILV methyl labeled proteins. J Biomol NMR 45:311-8
Lentz, Margaret R; Westmoreland, Susan V; Lee, Vallent et al. (2008) Metabolic markers of neuronal injury correlate with SIV CNS disease severity and inoculum in the macaque model of neuroAIDS. Magn Reson Med 59:475-84
Hyberts, Sven G; Heffron, Gregory J; Tarragona, Nestor G et al. (2007) Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc 129:5108-16
Chen, Jingyang; Dupradeau, Francois-Yves; Case, David A et al. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4'-oxidized abasic sites. Biochemistry 46:3096-107
Kim, John P; Lentz, Margaret R; Westmoreland, Susan V et al. (2005) Relationships between astrogliosis and 1H MR spectroscopic measures of brain choline/creatine and myo-inositol/creatine in a primate model. AJNR Am J Neuroradiol 26:752-9
Lentz, Margaret R; Kim, John P; Westmoreland, Susan V et al. (2005) Quantitative neuropathologic correlates of changes in ratio of N-acetylaspartate to creatine in macaque brain. Radiology 235:461-8
Peled, S; Cory, D G; Raymond, S A et al. (1999) Water diffusion, T(2), and compartmentation in frog sciatic nerve. Magn Reson Med 42:911-8
Mo, H; Dai, Y; Pochapsky, S S et al. (1999) 1H, 13C and 15N NMR assignments for a carbon monoxide generating metalloenzyme from Klebsiella pneumoniae. J Biomol NMR 14:287-8

Showing the most recent 10 out of 12 publications