The formation of hydroxyl radical spin adduct of DMPO was observed during the reaction of SOD and SOD mutants (G37R and H46R) with hydrogen peroxide. The signal intensity of the hydroxyl radical spin adduct of DMPO obtained with WT-SOD was comparable to G37R/hydrogen peroxide but no spin adduct was observed with H46R/hydrogen peroxide. SOD and FALS SOD mutants were constructed by replacement of Cys6 by Ala and Cys111 by Ser. A similar trend was obtained by following the oxidation of ABTS to ABTS cation radical. In the present study we also show that ABTS cation radical itself can react with DMPO or PBN and this reaction could lead to erroneous interpretation of results. This reaction occurred at a much faster rate with DMPO than with PBN. The quantification of copper in three SOD proteins was studied by X-band ESR at 77 K. The amount of copper bound varied as follows: wild>G37R>>H46R. Incubation of SOD with hydrogen peroxide in chelex-treated PBS resulted in an ESR spectrum that is composed of two copper species with different coordination sites. The X-band ESR spectrum of WT-SOD obtained at liquid nitrogen temperature is characteristic of an axially symmetric copper coordination site (a-parallel = 145 G; g-parallel = 2.26 and g-perpendicular = 2.06). We conclude that the coordination of copper changes from four histidine residues to a different environemtn possibly consisting of histidine and two oxygen residues. ?

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001008-26
Application #
6448002
Study Section
Project Start
2001-03-01
Project End
2002-02-28
Budget Start
Budget End
Support Year
26
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Medical College of Wisconsin
Department
Type
DUNS #
073134603
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Shan, Guo-Qiang; Yu, Ao; Zhao, Chuan-Fang et al. (2015) A combined experimental and computational investigation on the unusual molecular mechanism of the Lossen rearrangement reaction activated by carcinogenic halogenated quinones. J Org Chem 80:180-9
Mao, Li; Liu, Yu-Xiang; Huang, Chun-Hua et al. (2015) Intrinsic Chemiluminescence Generation during Advanced Oxidation of Persistent Halogenated Aromatic Carcinogens. Environ Sci Technol 49:7940-7
Li, Yan; Huang, Chun-Hua; Liu, Yu-Xiang et al. (2014) Detoxifying polyhalogenated catechols through a copper-chelating agent by forming stable and redox-inactive hydrogen-bonded complexes with an unusual perpendicular structure. Chemistry 20:13028-33
Shao, Jie; Huang, Chun-Hua; Kalyanaraman, Balaraman et al. (2013) Potent methyl oxidation of 5-methyl-2'-deoxycytidine by halogenated quinoid carcinogens and hydrogen peroxide via a metal-independent mechanism. Free Radic Biol Med 60:177-82
Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei et al. (2013) Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex. Toxicol Appl Pharmacol 266:335-44
Qin, Hao; Huang, Chun-Hua; Mao, Li et al. (2013) Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens. Free Radic Biol Med 63:459-66
Huang, Chun-Hua; Shan, Guo-Qiang; Mao, Li et al. (2013) The first purification and unequivocal characterization of the radical form of the carbon-centered quinone ketoxy radical adduct. Chem Commun (Camb) 49:6436-8
Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang et al. (2013) Ofloxacin induces apoptosis via ?1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes. Toxicol Appl Pharmacol 267:74-87
Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang et al. (2013) Bisphenol A at a low concentration boosts mouse spermatogonial cell proliferation by inducing the G protein-coupled receptor 30 expression. Toxicol Appl Pharmacol 267:88-94
Liddle, Brendan J; Wanniarachchi, Sarath; Hewage, Jeewantha S et al. (2012) Electronic communication across diamagnetic metal bridges: a homoleptic gallium(III) complex of a redox-active diarylamido-based ligand and its oxidized derivatives. Inorg Chem 51:12720-8

Showing the most recent 10 out of 368 publications