Using a combination of quantum-mechanical and classical methodology, we are investigating base catalyzed amide hydrolysis. This reaction is prototypical for many enzymatic peptide cleavage processes and a thorough study can therefore enhance our understanding of some important biological processes. We have performed high level ab initio calculations to obtain an accurate description of the gas phase reaction path and the reaction energetics for small amides. We have carried out Monte Carlo simulations for the reactants placed in a bath of explicit water molecules to calculate solvent effects on this reaction. Using statistical perturbation theory and a protocol introduced by Jorgensen, we have calculated the potentials of mean force along the predetermined reaction coordinate. Some important results include the observation of a significant solvent- induced barrier towards formation of the tetrahedral intermediate (TET), and a remarkable shift of the transition state towards TET breakdown. Similar calculations have been performed for the TET formation step in the corresponding enzymatic reaction (Trypsin). In general, we have achieved good agreement with the available experimental data. We plan to extend our studies to investigate (1) explicit polarization, (2) a fully coupled QM/MM representation of the system. Both enhancements in the underlying theoretical model are expected to improve the accuracy of the results, and their importance can be assessed. The graphics facilities of the Computer Graphics Laboratory at UCSF have been used extensively in the course of our studies. Computer programs including MidasPlus (from CGL) and CHEMCAM (from myself) have prove very helpful to visualize various aspects of the reaction. The use of the CGL facilities is essential for successful completion of the current project.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001081-21
Application #
6280128
Study Section
Project Start
1998-07-01
Project End
1999-06-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
21
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Kozak, John J; Gray, Harry B; Garza-López, Roberto A (2018) Relaxation of structural constraints during Amicyanin unfolding. J Inorg Biochem 179:135-145
Alamo, Lorenzo; Pinto, Antonio; Sulbarán, Guidenn et al. (2018) Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease. Biophys Rev 10:1465-1477
Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter et al. (2017) Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures. Biophys J 113:2344-2353
Chu, Shidong; Zhou, Guangyan; Gochin, Miriam (2017) Evaluation of ligand-based NMR screening methods to characterize small molecule binding to HIV-1 glycoprotein-41. Org Biomol Chem 15:5210-5219
Portioli, Corinne; Bovi, Michele; Benati, Donatella et al. (2017) Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. J Biomed Mater Res A 105:847-858
Alamo, Lorenzo; Koubassova, Natalia; Pinto, Antonio et al. (2017) Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys Rev 9:461-480
Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava et al. (2017) Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1. Mol Cell 65:832-847.e4
Sofiyev, Vladimir; Kaur, Hardeep; Snyder, Beth A et al. (2017) Enhanced potency of bivalent small molecule gp41 inhibitors. Bioorg Med Chem 25:408-420
Nekouzadeh, Ali; Rudy, Yoram (2016) Conformational changes of an ion-channel during gating and emerging electrophysiologic properties: Application of a computational approach to cardiac Kv7.1. Prog Biophys Mol Biol 120:18-27
Towse, Clare-Louise; Vymetal, Jiri; Vondrasek, Jiri et al. (2016) Insights into Unfolded Proteins from the Intrinsic ?/? Propensities of the AAXAA Host-Guest Series. Biophys J 110:348-361

Showing the most recent 10 out of 508 publications