We are determining the high resolution structures of two naturally occurring vaccinia virus DNA segments containing extrahelical bases by NMR. Each segment contains two extra bases (G and C) on the same strand, separated by d(AA).d(TT). The sequences appear in the vaccinia genome as reverse complements, one near each terminus, with the extrahelical bases at corresponding but complementary locations. Our strategy is to synthesize two 29mers: 5'CCTAATTATAACGAAGTTAGTACATTAGG3' and 5'CCTAATGTACTAACGAAGTTATAATTAGG3'. We are also synthesizing and determining the structures of control oligonucleotides lacking either or both of the extrahelical bases. The two 29mers contain the viral DNA sequences, with the terminal d(AT) base pairs having been replaced by d(GC) pairs and a trinucleotide linker GAA having been added to permit formation of a stem/loop. This will reduce the effects of fraying as well as overlap in the NOESY signals, avoid the necessity of forming a duplex by mixing single strands, and improve overall stability. We will determine the DNA stem/loop structures with restrained molecular dynamics, using MARDIGRAS, based upon both NOE-derived proton-proton distances and relaxation matrix-calculated NOESY cross peak volumes in both D2O and H2O. MidasPlus and Sparky are central to our work in assessing structural features such as the extent of pairing of the two AT base pairs between the extrahelical bases and the looping out or stacking of the extrahelical bases themselves.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001081-24
Application #
6456821
Study Section
Project Start
2001-07-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
24
Fiscal Year
2001
Total Cost
$273,230
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Kozak, John J; Gray, Harry B; Garza-López, Roberto A (2018) Relaxation of structural constraints during Amicyanin unfolding. J Inorg Biochem 179:135-145
Alamo, Lorenzo; Pinto, Antonio; Sulbarán, Guidenn et al. (2018) Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease. Biophys Rev 10:1465-1477
Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter et al. (2017) Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures. Biophys J 113:2344-2353
Chu, Shidong; Zhou, Guangyan; Gochin, Miriam (2017) Evaluation of ligand-based NMR screening methods to characterize small molecule binding to HIV-1 glycoprotein-41. Org Biomol Chem 15:5210-5219
Portioli, Corinne; Bovi, Michele; Benati, Donatella et al. (2017) Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. J Biomed Mater Res A 105:847-858
Alamo, Lorenzo; Koubassova, Natalia; Pinto, Antonio et al. (2017) Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys Rev 9:461-480
Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava et al. (2017) Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1. Mol Cell 65:832-847.e4
Sofiyev, Vladimir; Kaur, Hardeep; Snyder, Beth A et al. (2017) Enhanced potency of bivalent small molecule gp41 inhibitors. Bioorg Med Chem 25:408-420
Kozak, John J; Gray, Harry B; Garza-López, Roberto A (2016) Cytochrome unfolding pathways from computational analysis of crystal structures. J Inorg Biochem 155:44-55
Amlong, Corey A; Perkins, Mark G; Houle, Timothy T et al. (2016) Contrasting Effects of the ?-Aminobutyric Acid Type A Receptor ?3 Subunit N265M Mutation on Loss of Righting Reflexes Induced by Etomidate and the Novel Anesthetic Barbiturate R-mTFD-MPAB. Anesth Analg 123:1241-1246

Showing the most recent 10 out of 508 publications