This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator. Mechanistically diverse enzyme superfamilies represent sets of divergent proteins whose substrates, products and even overall functions can be substantially different. Divergent evolution of such broadly varied chemical reactions can be described by the chemistry-constrained model of enzyme evolution, in which nature re-engineers the ancestral scaffold for a variety of functions by conserving a fundamental chemical capability such as a partial reaction, while evolving variations in substrate binding, and therefore overall chemistry. This renewal proposal has four aims, which extend the progress achieved in the previous grant:1) Investigate additional mechanistically diverse enzyme superfamilies to determine how the delivery of catalysis is constrained by the common catalytic module in each. We will also detail for each how new catalysts have arisen to perform a variety of functions. We expect the results to reveal general principles of enzyme design utilized in nature and identify specific rules applicable for functional inference and mechanistic understanding for each of the superfamilies investigated. This information will be made available to the scientific community via our ?Structure-Function Linkage Database (SFLD)?. 2) Identify sequence/structural differences that discriminate subgroups/families in characterized superfamilies to achieve more precision in functional inference than can be obtained by prediction of the superfamily-common functions alone. 3) Investigate superfamilies that utilize complex co-factors to learn how such superfamilies differ from the relatively more ?simple? types of superfamilies we have previously studied. These studies will focus first on superfamilies that use FAD cofactors.4) Lay the groundwork for predicting promiscuity and new chemical reactions that could be supported by the catalytic modules studied in this proposal. Docking methodologies will be used to identify small molecules likely to bind or that could be turned over by superfamily members. The results will be added to the SFLD to aid others in inference of function, identification of inhibitors useful in structural characterization or drug design, and to guide protein engineering/design for applications to human health.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001081-31
Application #
7723490
Study Section
Special Emphasis Panel (ZRG1-BST-D (40))
Project Start
2008-07-01
Project End
2009-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
31
Fiscal Year
2008
Total Cost
$15,353
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Kozak, John J; Gray, Harry B; Garza-López, Roberto A (2018) Relaxation of structural constraints during Amicyanin unfolding. J Inorg Biochem 179:135-145
Alamo, Lorenzo; Pinto, Antonio; Sulbarán, Guidenn et al. (2018) Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease. Biophys Rev 10:1465-1477
Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter et al. (2017) Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures. Biophys J 113:2344-2353
Chu, Shidong; Zhou, Guangyan; Gochin, Miriam (2017) Evaluation of ligand-based NMR screening methods to characterize small molecule binding to HIV-1 glycoprotein-41. Org Biomol Chem 15:5210-5219
Portioli, Corinne; Bovi, Michele; Benati, Donatella et al. (2017) Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. J Biomed Mater Res A 105:847-858
Alamo, Lorenzo; Koubassova, Natalia; Pinto, Antonio et al. (2017) Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys Rev 9:461-480
Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava et al. (2017) Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1. Mol Cell 65:832-847.e4
Sofiyev, Vladimir; Kaur, Hardeep; Snyder, Beth A et al. (2017) Enhanced potency of bivalent small molecule gp41 inhibitors. Bioorg Med Chem 25:408-420
Nekouzadeh, Ali; Rudy, Yoram (2016) Conformational changes of an ion-channel during gating and emerging electrophysiologic properties: Application of a computational approach to cardiac Kv7.1. Prog Biophys Mol Biol 120:18-27
Towse, Clare-Louise; Vymetal, Jiri; Vondrasek, Jiri et al. (2016) Insights into Unfolded Proteins from the Intrinsic ?/? Propensities of the AAXAA Host-Guest Series. Biophys J 110:348-361

Showing the most recent 10 out of 508 publications