This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Software tools for sequence alignments and structure homology modeling must evolve with the large volume of new data being produced by the various genome projects and technologies such as DNA microarrays. Many of the commonly used bioinformatics programs have yet to take advantage of the technological advances made in areas such as Python, Java, and web-based interfaces. We have designed and implemented programs to take advantage of these new technologies to enable the informaticist/scientist to have a more user-friendly and efficient working environment. Our software tools help automate the data processing pipeline for sequence data and the facile management of results. We are designing Perl and Python applications for molecular biologists interested in structure studies in order to make the wealth of available UNIX sequence analysis and homology modeling tools as easy to use as browsing the Web. Further, we intend to develop automated analysis tools for many of the more routine data analysis tasks. The Resource for Biocomputing, Visualization, and Informatics (RBVI) offers a unique context for this interdisciplinary work, and though our collaborations with molecular biologists and other scientists the tools we develop are having an important impact on the broader scientific community.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001081-33
Application #
8170505
Study Section
Special Emphasis Panel (ZRG1-BST-D (40))
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
33
Fiscal Year
2010
Total Cost
$26,648
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Kozak, John J; Gray, Harry B; Garza-López, Roberto A (2018) Relaxation of structural constraints during Amicyanin unfolding. J Inorg Biochem 179:135-145
Alamo, Lorenzo; Pinto, Antonio; Sulbarán, Guidenn et al. (2018) Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease. Biophys Rev 10:1465-1477
Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter et al. (2017) Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures. Biophys J 113:2344-2353
Chu, Shidong; Zhou, Guangyan; Gochin, Miriam (2017) Evaluation of ligand-based NMR screening methods to characterize small molecule binding to HIV-1 glycoprotein-41. Org Biomol Chem 15:5210-5219
Portioli, Corinne; Bovi, Michele; Benati, Donatella et al. (2017) Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. J Biomed Mater Res A 105:847-858
Alamo, Lorenzo; Koubassova, Natalia; Pinto, Antonio et al. (2017) Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys Rev 9:461-480
Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava et al. (2017) Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1. Mol Cell 65:832-847.e4
Sofiyev, Vladimir; Kaur, Hardeep; Snyder, Beth A et al. (2017) Enhanced potency of bivalent small molecule gp41 inhibitors. Bioorg Med Chem 25:408-420
Kozak, John J; Gray, Harry B; Garza-López, Roberto A (2016) Cytochrome unfolding pathways from computational analysis of crystal structures. J Inorg Biochem 155:44-55
Amlong, Corey A; Perkins, Mark G; Houle, Timothy T et al. (2016) Contrasting Effects of the ?-Aminobutyric Acid Type A Receptor ?3 Subunit N265M Mutation on Loss of Righting Reflexes Induced by Etomidate and the Novel Anesthetic Barbiturate R-mTFD-MPAB. Anesth Analg 123:1241-1246

Showing the most recent 10 out of 508 publications