The guanine nucleotide dissociation inhibitor (GDI) regulates the retrieval of Rab GTPases in vesicular traffic, while inhibiting GDP dissociation from Rabs. The soluble complex, GDI-Rab, serves as a cytosolic reservoir for the delivery of Rab to newly formed vesicles, where the Rab protein is activated to the GTP form. The crystal structure of this 55 kDa protein had been previously determined to 1.8 E resolution. The SSRL beamline 9-1 was optimized at a wavelength 0.79 E, which allowed us to collect an ultra high resolution data set to 1.04 E at -176 C. High and medium (1.4 E) resolution data sets were collected from a single crystal and the data were merged and processed using MOLSFLM with an overall Rmerge of 7% (all data). Refinement was carried out using SHELXL-97 which, at this resolution, allowed us to perform individual anisotropic thermal displacement parameter refinement. A number of residues were found to possess multiple conformations and some incorrect rotomers were identified, particularly for leucine residues. In addition, the His-tagged residues at the N terminus that were used for purification purpose could now be clearly identified in the electron density map. Over 400 water molecules were added stepwise during the refinement and hydrogens were positioned towards the end of refinement. The current Rcryst and Rfree values are 15.6% and 19.0%, respectively.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-20
Application #
6119367
Study Section
Project Start
1999-03-01
Project End
2000-04-14
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
20
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Feinberg, Hadar; Jégouzo, Sabine A F; Rex, Maximus J et al. (2017) Mechanism of pathogen recognition by human dectin-2. J Biol Chem 292:13402-13414
Warelow, Thomas P; Pushie, M Jake; Cotelesage, Julien J H et al. (2017) The active site structure and catalytic mechanism of arsenite oxidase. Sci Rep 7:1757

Showing the most recent 10 out of 604 publications