This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Polyketide synthase (PKS) produces a huge variety of anti-cancer, anti-virus, blood-pressure lowering and antibiotic compounds. No crystal structure has ever been determined for PKS. Determination of crystal structures of PKS will greatly facilitate the pharmaceutical utilization of PKS by protein-engineering or substrate-engineering. Eight critical enzymes of the polyketide synthase family has been crystalized, including ketosynthase/chain length factor (KS/CLF), aromatase (ARO), acyl carrier protein (ACP4), loading didomain (LDD), and various thioesterases (TE). Among these proteins, the structure of thioesterase (TE, proposal 5A42) has been solved to 2.8 utilizing the beamtime from SSRL. TEs from different species have also been crystallized, and will give us the chance to improve the resolution of TE. Of the remaining seven protein crystals, a ketosynthase (KS3) was found to give limited resolution (< 3.5 ) under the x-ray system in UCSF, and will greatly benefit from collecting data at SSRL.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-28
Application #
7597937
Study Section
Special Emphasis Panel (ZRG1-BPC-E (40))
Project Start
2007-03-01
Project End
2008-02-29
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
28
Fiscal Year
2007
Total Cost
$197
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; J├Ânsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Noach, Ilit; Ficko-Blean, Elizabeth; Pluvinage, Benjamin et al. (2017) Recognition of protein-linked glycans as a determinant of peptidase activity. Proc Natl Acad Sci U S A 114:E679-E688
Robb, Melissa; Hobbs, Joanne K; Woodiga, Shireen A et al. (2017) Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence. PLoS Pathog 13:e1006090

Showing the most recent 10 out of 604 publications