This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The mechanisms by which organisms control transition metal ions and the roles of these metals in cellular regulation have emerged as key areas of investigation in metallobiochemistry. Specific metal binding and responses are required by biological systems in order to avoid cross-talk between metals in the expression of proteins, in the uptake of specific metals, and for the incorporation of the correct metal into enzyme active sites. The details of how the metalloproteins recognize, bind and respond to the presence of the requisite metal ion are not well established. This is particularly true for transition metal ions, many of which have similar charges and ionic radii. Thus, it seems likely that coordination geometry and ligand preferences play important roles in distinguishing transition metals. The overall objective of this research project is to understand the structural parameters that underlie metal-specific binding, and the related protein structural responses to specific metal binding, in metalloproteins involved in metal trafficking. Toward this goal, we plan to use XAS to examine the structures of Ni sites in nickel trafficking proteins including: a metalloregulator (NikR), a metallotransporter (NikABCDE) and a metallochaperone (HypA)--proteins all involved in nickel trafficking in E. coli, and their homologs in H. pylori. The viability of bacteria, including human pathogens (like H. pylori), is linked to the acquisition of required metals (including Ni), and several human diseases have been shown to result from a breakdown in metal trafficking (e.g., Wilson's and Menkes diseases for copper, genetic hemochromatosis and other hereditary iron overload disorders for iron). In addition, a detailed understanding of the structural parameters involved in metal-trafficking may lead to new antibiotics that interfere with bacterial metal metabolism, which is frequently essential for pathogenesis, and the development of plants that are resistant to metals and useful in bioremediation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-28
Application #
7598114
Study Section
Special Emphasis Panel (ZRG1-BPC-E (40))
Project Start
2007-03-01
Project End
2008-02-29
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
28
Fiscal Year
2007
Total Cost
$199
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Morrison, Christine N; Spatzal, Thomas; Rees, Douglas C (2017) Correction to Reversible Protonated Resting State of the Nitrogenase Active Site. J Am Chem Soc 139:13958
Remesh, Soumya G; Andreatta, Massimo; Ying, Ge et al. (2017) Unconventional Peptide Presentation by Major Histocompatibility Complex (MHC) Class I Allele HLA-A*02:01: BREAKING CONFINEMENT. J Biol Chem 292:5262-5270

Showing the most recent 10 out of 604 publications