This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. In studies performed during our previous proposals, a new methodology was developed for analyzing and interpreting iron L-edge transition intensity distributions in terms of the total and differential orbital covalency (DOC). It was found that the integrated iron L-edge intensity could be used to obtain the total covalency of the complex. Furthermore, a projection methodology was developed which allows the covalency of the individual symmetry-related sets of orbitals and the DOC to be experimentally determined from the L-edge multiplet intensity distribution. The previous study serves as a foundation for the series of studies proposed here. The methodology developed during the previous proposal will be expanded to complexes that exhibit metal-to-ligand charge transfer and complexes of non-cubic symmetry. The expanded methodology will be applied and calibrated to sigma-donor-pi-acceptor complexes, an essential step in the study of the nature of heme versus non-heme iron bonding and its relation to reactivity, a major focus of this proposal. Data will be obtained from a number of specific heme complexes and compared to the non-heme complexes of the previous study. Of special interest are the electronic structural differences amongst low-spin ferriheme systems of different ground state electronic configurations. Additionally, this proposed research will provide the groundwork for determining the electronic structure in a series of complexes that serve as models of the enzyme cytochrome c oxidase. The determination of covalency and DOC of these models should provide insight into the electronic structure of this enzyme and differences related to the O-O bond cleavage in the enzyme but not the model. Finally, the proposed research will begin our study of the electronic structure of high valent Fe-porphyrins. Using two non-heme iron(IV) complexes to define the electronic contributions of the Fe(IV) ion, we will next study the electronic structure of a recent Fe(IV)=O model compound.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-30
Application #
7954199
Study Section
Special Emphasis Panel (ZRG1-BPC-E (40))
Project Start
2009-03-01
Project End
2010-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
30
Fiscal Year
2009
Total Cost
$41,417
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O et al. (2017) Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 7:44628

Showing the most recent 10 out of 604 publications