This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The development of antibiotic resistance to bacterial infections is a serious human threat in large part due to bacterial b-lactamases. Inhibition of these b-lactamases is therefore a key pharmaceutical approach. Our lab focuses on delineating the molecular inhibition mechanism of clinically available inhibitors, additional potent inhibitors that are in, or close to, clinical trials, and our own designed inhibitors. The inhibition mechanism is complex involving a large number of covalent intermediates that we study using a novel X-ray and Raman crystallographic approach. High resolution crystallographic studies are proposed for inhibitor complexes for a variety of different clinically relevant b-lactamases classes including KPC-2, recently linked to an K. pneumoniae outbreak in New York, SHV-1, and OXA-1, OXA-10, and OXA-24/40. Both OXA24/40 and KPC-2 are a major threat to carbapenems, a last resort antibiotic. Our inhibitors are developed in collaboration with Dr. Buynak (Southern Methodist University) and are designed to form a stable inhibitory intermediate, either by forming a trans-enamine or bicyclic aromatic ring intermediate. In addition, we are embarking on using fragment-mixture soaked b-lactamase crystals as a tool for finding new lead compounds. In addition, our lab focuses on structural studies of cyclic nucleotide signaling. We have recently crystallized the coiled-coil domain of a guanylyl cyclase involved in blood pressure regulation. Crystals diffract to 2? and we plan on collecting a SeMet MAD dataset. Finally, we have crystallized several cyclic nucleotide binding domains of ion channels of which we determined the structure of one, and have diffracting crystals for two others. The latter project is aimed to providing structural insights into cyclic nucleotide signaling pathways involving in blood pressure regulation, bone growth and other important physiological processes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-30
Application #
7954491
Study Section
Special Emphasis Panel (ZRG1-BPC-E (40))
Project Start
2009-03-01
Project End
2010-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
30
Fiscal Year
2009
Total Cost
$2,067
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Feinberg, Hadar; Jégouzo, Sabine A F; Rex, Maximus J et al. (2017) Mechanism of pathogen recognition by human dectin-2. J Biol Chem 292:13402-13414
Warelow, Thomas P; Pushie, M Jake; Cotelesage, Julien J H et al. (2017) The active site structure and catalytic mechanism of arsenite oxidase. Sci Rep 7:1757

Showing the most recent 10 out of 604 publications