This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Ligand K-edge XAS is a direct probe of ligand metal bonding. We have developed this methodology to investigate the electronic structures of model complexes and protein active-sites of Cu-S and Fe-S clusters. Our previous results showed that changing a ?2-S-sulfide bridge of a localized reduced Fe2S2 cluster to a ?-3-S-sulfide bridge reduces the anti-ferromagnetic coupling interaction leading to delocalized ground states in Fe3S4 and Fe4S4 clusters. We have found that there is a significant reduction of Fe-S bond covalency in all the protein active-sites relative to the models, which can be attributed to H-bonding in the protein. Particularly, the covalency of the tetranuclear [Fe4S4] cluster in HiPIP was very different than that in ferredoxin. The method has been extended to define the non-innocent nature of the dithiolene ligands in determining the redox properties of a classic series of Ni-dithiolene complexes. We plan to evaluate the generality of the difference between HiPIPs and ferredoxins and systematically study the effect of H-bonding, solvent interaction and effect of changing dielectric field around these clusters using well-characterized model complexes and proteins. We will use current results on [Fe3S4] clusters to understand the electronic structures of [MFe3S4] complexes which are models for the active sites of heteronuclear clusters including nitrogenase, CODH, etc. The effects of Cys->Ser mutation on the electronic structures of mononuclear, binuclear and tetranuclear clusters will be evaluated. The non-heme iron active sites of superoxide reductase and nitrile hydratase will be studied using S K-edge to understand the oxidation level of the Fe-S bonds present in the active site and their contribution to tuning reactivity. We will also explore P450 type active sites and the effect of substrate binding on the Fe-S bond.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001209-31
Application #
8169978
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2010-05-01
Project End
2011-02-28
Budget Start
2010-05-01
Budget End
2011-02-28
Support Year
31
Fiscal Year
2010
Total Cost
$10,513
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O et al. (2017) Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 7:44628

Showing the most recent 10 out of 604 publications