This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We propose small angle x-ray scattering experiments (SAXS) at SSRL to study the influence of H2O-D2O solvent substitution effect on the structural stability of globular proteins. Proteins naturally exist in aqueous solutions. However, it is common to dissolve proteins in heavy water for biophysical studies using various experimental techniques, e.g., infrared spectroscopy, Raman scattering, nuclear magnetic resonance, and neutron scattering, in order to avoid the difficulties involved in the measurement of proteins with the presence of H2O. To be valid, these studies assume that deuterium isotopic substitution does not influence biomolecular structure or dynamics significantly, based on the idea that D2O is the solvent that causes the mildest possible perturbation. However, experimental data, especially thermodynamic studies, have shown that solvent substitution can cause marked effects on the stability of proteins in solution. In particular, the substitution of D2O for H2O stabilizes the proteins against thermal denaturation and urea-induced denaturation. More significantly, it has been found that some proteins appear to adopt different structural conformations in D2O and H2O, with other solution conditions being identical. The small angle scattering experiment is the only technique that directly provides essential information on the global structural conformation of protein molecules in solution. It will greatly complement the thermodynamic results and contribute significantly to our understanding of deuterium isotopic effects on protein denaturation. For this proposed project, we will monitor the structural change of two model proteins, hen?s egg lysozyme and bovine serum albumin (BSA) dissolved in H2O and D2O, respectively, in the thermal denaturation and urea-induced denaturation processes, and study the influence on the denaturation behavior by the substitution of H2O with D2O.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001209-31
Application #
8170315
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2010-05-01
Project End
2011-02-28
Budget Start
2010-05-01
Budget End
2011-02-28
Support Year
31
Fiscal Year
2010
Total Cost
$346
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O et al. (2017) Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 7:44628

Showing the most recent 10 out of 604 publications