This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. ABSTRACT: The Albany HVEM is one of only two in the world that are dedicated to biological studies (the other is in Okazaki, Japan). The HVEM has a maximum accelerating voltage of 1200kV, and a point-to-point resolution of about 5 . It is equipped with a number of specialized specimen holders, built in-house, that are suitable for single and double-tilt tomography up to 75 tilt. A side-entry differentially-pumped environmental chamber is also available. An in-house designed intensified video-rate CCD TV system can be used to observe the image with very low electron irradiation, for focusing and following the image during tomographic data collection. Several areas of improvement are envisioned for increasing the usefulness of the HVEM. Among these are computer control of the tilt stage and implementation of cryo-tomography. The video camera used for televiewing is sensitive enough for manual focus and tracking during cryo-tomography at up to about 10,000X, and the existing cryotransfer stage can likely be repaired. HVEM cryo-tomography of plunge-frozen whole cells will complement work done on the IVEM on the periphery of such cells.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001219-25
Application #
7357281
Study Section
Special Emphasis Panel (ZRG1-BST-D (40))
Project Start
2006-02-01
Project End
2007-01-31
Budget Start
2006-02-01
Budget End
2007-01-31
Support Year
25
Fiscal Year
2006
Total Cost
$5,623
Indirect Cost
Name
Wadsworth Center
Department
Type
DUNS #
153695478
City
Menands
State
NY
Country
United States
Zip Code
12204
Booth, David M; Enyedi, Balázs; Geiszt, Miklós et al. (2016) Redox Nanodomains Are Induced by and Control Calcium Signaling at the ER-Mitochondrial Interface. Mol Cell 63:240-248
Mannella, Carmen A; Lederer, W Jonathan; Jafri, M Saleet (2013) The connection between inner membrane topology and mitochondrial function. J Mol Cell Cardiol 62:51-7
Takvorian, Peter M; Buttle, Karolyn F; Mankus, David et al. (2013) The multilayered interlaced network (MIN) in the sporoplasm of the microsporidium Anncaliia algerae is derived from Golgi. J Eukaryot Microbiol 60:166-78
Forbes, Stephen J; Martinelli, Daniel; Hsieh, Chyongere et al. (2012) Association of a protective monoclonal IgA with the O antigen of Salmonella enterica serovar Typhimurium impacts type 3 secretion and outer membrane integrity. Infect Immun 80:2454-63
Wang, Ruiwu; Zhong, Xiaowei; Meng, Xing et al. (2011) Localization of the dantrolene-binding sequence near the FK506-binding protein-binding site in the three-dimensional structure of the ryanodine receptor. J Biol Chem 286:12202-12
Marko, Michael; Leith, Ardean; Hsieh, Chyongere et al. (2011) Retrofit implementation of Zernike phase plate imaging for cryo-TEM. J Struct Biol 174:400-12
Springer, Deborah J; Ren, Ping; Raina, Ramesh et al. (2010) Extracellular fibrils of pathogenic yeast Cryptococcus gattii are important for ecological niche, murine virulence and human neutrophil interactions. PLoS One 5:e10978
Li, Chunhao; Sal, Melanie; Marko, Michael et al. (2010) Differential regulation of the multiple flagellins in spirochetes. J Bacteriol 192:2596-603
McEwen, Bruce F; Dong, Yimin (2010) Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell Mol Life Sci 67:2163-72
Palladino, Michael J (2010) Modeling mitochondrial encephalomyopathy in Drosophila. Neurobiol Dis 40:40-5

Showing the most recent 10 out of 252 publications