The Central Computing Facility continues to provide the necessary computing support for the Resource, achieving greater than 99% availability of all systems. The number of systems and X terminal stations is adequate for the Resource staff. Although funds for upgrading all systems were not provided, a few selected system upgrades were purchased that significantly increased the computing speed available for the most demanding models currently in use. The proposal for building parallelism into computationally-intensive models met with limited enthusiasm in the grant review, and is not currently being pursued. This is reflected in our choice of an asymmetric distribution of processor performance rather than a more symmetric distribution that would permit redundancy comparable to that required in our models. It is possible to determine the feasibility of exploiting parallelism with our existing hardware, using the two SPARC10 workstations and the dual processors to become available on the 670MP system after the upgrade is installed. One critical network bottleneck, the congested subnet in the Health Sciences H-Wing, has been temporarily alleviated by moving all Resource systems in the wing to another subnet. This move was achieved at no cost to the Resource. This is not a long-term solution to the network bandwidth problem, but it will suffice for the near term until higher speed network components are affordable.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001243-15
Application #
5223048
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
1996
Total Cost
Indirect Cost
Bassingthwaighte, James B; Butterworth, Erik; Jardine, Bartholomew et al. (2012) Compartmental modeling in the analysis of biological systems. Methods Mol Biol 929:391-438
Dash, Ranjan K; Bassingthwaighte, James B (2010) Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 38:1683-701
Bassingthwaighte, James B; Raymond, Gary M; Butterworth, Erik et al. (2010) Multiscale modeling of metabolism, flows, and exchanges in heterogeneous organs. Ann N Y Acad Sci 1188:111-20
Dash, Ranjan K; Bassingthwaighte, James B (2006) Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion. Ann Biomed Eng 34:1129-48
Dash, Ranjan K; Bassingthwaighte, James B (2004) Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 32:1676-93
Kellen, Michael R; Bassingthwaighte, James B (2003) Transient transcapillary exchange of water driven by osmotic forces in the heart. Am J Physiol Heart Circ Physiol 285:H1317-31
Kellen, Michael R; Bassingthwaighte, James B (2003) An integrative model of coupled water and solute exchange in the heart. Am J Physiol Heart Circ Physiol 285:H1303-16
Wang, C Y; Bassingthwaighte, J B (2001) Capillary supply regions. Math Biosci 173:103-14
Swanson, K R; True, L D; Lin, D W et al. (2001) A quantitative model for the dynamics of serum prostate-specific antigen as a marker for cancerous growth: an explanation for a medical anomaly. Am J Pathol 158:2195-9
Swanson, K R; Alvord Jr, E C; Murray, J D (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33:317-29

Showing the most recent 10 out of 19 publications