The goal of the project is to engineer the surface of poly(dimethylsiloxane) (PDMS) with a self-assembled monolayer (SAM) which terminates in a specific peptide or protein to which cells can directly attach and/or respond. The project will involve the development of necessary chemical reactions to modify the surface of the PDMS, with surface characterization after each step in the synthesis of the engineered surface. Once the desired surface has been developed, cultured cells will be grown on it and their attachment/response monitored. The effects of peptide/protein density on cell response will be examined as well.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001296-17
Application #
6492608
Study Section
Project Start
2001-09-01
Project End
2002-08-31
Budget Start
Budget End
Support Year
17
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Tyler, Bonnie J; Peterson, Richard E (2013) Dead-time correction for time-of-flight secondary-ion mass spectral images: a critical issue in multivariate image analysis. Surf Interface Anal 45:475-478
Tyler, B J; Bruening, C; Rangaranjan, S et al. (2011) TOF-SIMS imaging of adsorbed proteins on topographically complex surfaces with Bi(3) (+) primary ions. Biointerphases 6:135
Medzihradszky, Katalin F (2008) Characterization of site-specific N-glycosylation. Methods Mol Biol 446:293-316
Medzihradszky, Katalin F (2005) Peptide sequence analysis. Methods Enzymol 402:209-44
Sanders, Joan E; Lamont, Sarah E; Karchin, Ari et al. (2005) Fibro-porous meshes made from polyurethane micro-fibers: effects of surface charge on tissue response. Biomaterials 26:813-8
Medzihradszky, Katalin F (2005) In-solution digestion of proteins for mass spectrometry. Methods Enzymol 405:50-65
Medzihradszky, Katalin F (2005) Characterization of protein N-glycosylation. Methods Enzymol 405:116-38
Martin, Stephanie M; Schwartz, Jeffrey L; Giachelli, Cecilia M et al. (2004) Enhancing the biological activity of immobilized osteopontin using a type-1 collagen affinity coating. J Biomed Mater Res A 70:10-9
Cheng, Xuanhong; Wang, Yanbing; Hanein, Yael et al. (2004) Novel cell patterning using microheater-controlled thermoresponsive plasma films. J Biomed Mater Res A 70:159-68
Wagner, Victoria E; Koberstein, Jeffrey T; Bryers, James D (2004) Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers. Biomaterials 25:2247-63

Showing the most recent 10 out of 120 publications