A DiDAC system is ready to be placed in service on the Multiparameter Flow Cytometer. This system has revolutionary capabilities for very fast and sophisticated control of the operation of all of our cytometers, as well as four-way sorting and waveform recording of the raw data pulses. This has been a very complex project requiring the close and continual interaction of the small DiDAC team. Recently, we decided to replace the expensive SUN workstations, that nearly all of the DiDAC software was developed on, with inexpensive PCs running LINUX. This approach has been evaluated and we recently purchased 300mHz Pentium II Quantex PCs to serve as the data collection computers for the DiDAC systems. The DiDAC software, written in ANSI-C by Mark Wilder and Mark Naivar, was easily ported to the PC platform with virtually no rewriting required. We will be able to switch the PCs over to Windows NT or 95- and thereby be able to use any of the PC software - when the system is not in use running the DiDAC system software. We currently have two IDL licenses for the SUN network and we can transfer them without penalty to run under LINUX or Windows - in fact we will save some more money by doing so.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR001315-16S1
Application #
6297994
Study Section
Project Start
1998-09-30
Project End
1999-06-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
16
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Los Alamos National Lab
Department
Type
DUNS #
City
Los Alamos
State
NM
Country
United States
Zip Code
87545
Frumkin, Jesse P; Patra, Biranchi N; Sevold, Anthony et al. (2016) The interplay between chromosome stability and cell cycle control explored through gene-gene interaction and computational simulation. Nucleic Acids Res 44:8073-85
Cushing, Kevin W; Piyasena, Menake E; Carroll, Nick J et al. (2013) Elastomeric negative acoustic contrast particles for affinity capture assays. Anal Chem 85:2208-15
Johnson, Leah M; Gao, Lu; Shields IV, C Wyatt et al. (2013) Elastomeric microparticles for acoustic mediated bioseparations. J Nanobiotechnology 11:22
Micheva-Viteva, Sofiya N; Shou, Yulin; Nowak-Lovato, Kristy L et al. (2013) c-KIT signaling is targeted by pathogenic Yersinia to suppress the host immune response. BMC Microbiol 13:249
Ai, Ye; Sanders, Claire K; Marrone, Babetta L (2013) Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem 85:9126-34
Sanders, Claire K; Mourant, Judith R (2013) Advantages of full spectrum flow cytometry. J Biomed Opt 18:037004
Piyasena, Menake E; Austin Suthanthiraraj, Pearlson P; Applegate Jr, Robert W et al. (2012) Multinode acoustic focusing for parallel flow cytometry. Anal Chem 84:1831-9
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A et al. (2012) One-dimensional acoustic standing waves in rectangular channels for flow cytometry. Methods 57:259-71
Vuyisich, Momchilo; Sanders, Claire K; Graves, Steven W (2012) Binding and cell intoxication studies of anthrax lethal toxin. Mol Biol Rep 39:5897-903
Chaudhary, Anu; Ganguly, Kumkum; Cabantous, Stephanie et al. (2012) The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem Biophys Res Commun 417:299-304

Showing the most recent 10 out of 240 publications