We have developed a stopped-flow flow cytometer with subsecond resolution to be used in kinetic analysis of cell activation. This instrument is extending the application of flow cytometry to important biological molecules that interact with cell surface receptors or can be linked to beads. The device is making it possible to examine the kinetics of interaction of a variety of macromolecular assemblies. In year 17, we took delivery of a specially designed Bio-Logic five syringe mixing device, tested it on the flow cytometer, and began to incorporate DiDAC into the instrument. We suggested modifications to the mixing system to allow sample and sheath delivery over an extended range of flow rates. The modified mixing system is expected to be delivered in May 1999. With funds provided in year 18, the new mixing system will be integrated into a Cytomation flow cytometer. The entire system is expected to be operational during year 18, in keeping with the time line proposed in the NFCR renewal application for years 16-20. A number of collaborative projects described below have advanced to the stage where they can be examined with the new instrument.
Frumkin, Jesse P; Patra, Biranchi N; Sevold, Anthony et al. (2016) The interplay between chromosome stability and cell cycle control explored through gene-gene interaction and computational simulation. Nucleic Acids Res 44:8073-85 |
Johnson, Leah M; Gao, Lu; Shields IV, C Wyatt et al. (2013) Elastomeric microparticles for acoustic mediated bioseparations. J Nanobiotechnology 11:22 |
Micheva-Viteva, Sofiya N; Shou, Yulin; Nowak-Lovato, Kristy L et al. (2013) c-KIT signaling is targeted by pathogenic Yersinia to suppress the host immune response. BMC Microbiol 13:249 |
Ai, Ye; Sanders, Claire K; Marrone, Babetta L (2013) Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem 85:9126-34 |
Sanders, Claire K; Mourant, Judith R (2013) Advantages of full spectrum flow cytometry. J Biomed Opt 18:037004 |
Cushing, Kevin W; Piyasena, Menake E; Carroll, Nick J et al. (2013) Elastomeric negative acoustic contrast particles for affinity capture assays. Anal Chem 85:2208-15 |
Houston, Jessica P; Naivar, Mark A; Jenkins, Patrick et al. (2012) Capture of Fluorescence Decay Times by Flow Cytometry. Curr Protoc Cytom 59:1.25.1-1.25.21 |
Marina, Oana C; Sanders, Claire K; Mourant, Judith R (2012) Effects of acetic acid on light scattering from cells. J Biomed Opt 17:085002-1 |
Chen, Jun; Carter, Mark B; Edwards, Bruce S et al. (2012) High throughput flow cytometry based yeast two-hybrid array approach for large-scale analysis of protein-protein interactions. Cytometry A 81:90-8 |
Piyasena, Menake E; Austin Suthanthiraraj, Pearlson P; Applegate Jr, Robert W et al. (2012) Multinode acoustic focusing for parallel flow cytometry. Anal Chem 84:1831-9 |
Showing the most recent 10 out of 240 publications