This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The overall goal of this project is to expand the biological applications of High Sensitivity Flow Cytometry (HSFCM) through methods developed and through instrumentation improvements leading to a multiparameter measurement capability. Flow cytometry has enabled major advances in the biomedical sciences by providing rapid, quantitative and sensitive multiparameter measurements of individual cellular particles. Individual analysis produces information on population heterogeneity that is not revealed by ensemble analysis and allows more precise measurement of individual attributes than is possible when measurement is done in bulk phase. However, one limitation of conventional flow cytometry is the inability to measure small particles less than 0.5 m or dim particles having less than several hundred fluorescent molecules. A wide variety of important biological particles, molecules, and molecular assemblies fall into these categories. Our approach is to access this measurement domain through enhanced capability HSFCM. We have identified 3 important biological areas to focus on: bacterial identification by genome analysis; DNA single molecule scanning applications in high throughput genomics; and mitochondrial genomic and biochemical analysis. Specific instrument enhancements in multi-color and light scatter detection will enable these new applications. The research plan is divided into four related Specific Aims: DNA Fragment Size-Based Analysis of Bacterial Fingerprints; High Throughput Scanning of Single DNA Molecules; Analysis of Individual Mitochondria; and High Sensitivity Instrumentation Development. The results of this research and development will create a new class of high sensitivity flow cytometry instrumentation and will stimulate a new field of flow cytometry at the sub-cellular single molecule level.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001315-25
Application #
7365971
Study Section
Special Emphasis Panel (ZRG1-SSS-U (02))
Project Start
2006-07-01
Project End
2007-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
25
Fiscal Year
2006
Total Cost
$124,332
Indirect Cost
Name
Los Alamos National Lab
Department
Type
DUNS #
175252894
City
Los Alamos
State
NM
Country
United States
Zip Code
87545
Frumkin, Jesse P; Patra, Biranchi N; Sevold, Anthony et al. (2016) The interplay between chromosome stability and cell cycle control explored through gene-gene interaction and computational simulation. Nucleic Acids Res 44:8073-85
Johnson, Leah M; Gao, Lu; Shields IV, C Wyatt et al. (2013) Elastomeric microparticles for acoustic mediated bioseparations. J Nanobiotechnology 11:22
Micheva-Viteva, Sofiya N; Shou, Yulin; Nowak-Lovato, Kristy L et al. (2013) c-KIT signaling is targeted by pathogenic Yersinia to suppress the host immune response. BMC Microbiol 13:249
Ai, Ye; Sanders, Claire K; Marrone, Babetta L (2013) Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem 85:9126-34
Sanders, Claire K; Mourant, Judith R (2013) Advantages of full spectrum flow cytometry. J Biomed Opt 18:037004
Cushing, Kevin W; Piyasena, Menake E; Carroll, Nick J et al. (2013) Elastomeric negative acoustic contrast particles for affinity capture assays. Anal Chem 85:2208-15
Houston, Jessica P; Naivar, Mark A; Jenkins, Patrick et al. (2012) Capture of Fluorescence Decay Times by Flow Cytometry. Curr Protoc Cytom 59:1.25.1-1.25.21
Marina, Oana C; Sanders, Claire K; Mourant, Judith R (2012) Effects of acetic acid on light scattering from cells. J Biomed Opt 17:085002-1
Chen, Jun; Carter, Mark B; Edwards, Bruce S et al. (2012) High throughput flow cytometry based yeast two-hybrid array approach for large-scale analysis of protein-protein interactions. Cytometry A 81:90-8
Piyasena, Menake E; Austin Suthanthiraraj, Pearlson P; Applegate Jr, Robert W et al. (2012) Multinode acoustic focusing for parallel flow cytometry. Anal Chem 84:1831-9

Showing the most recent 10 out of 240 publications